UNIVERSIDADE FEDERAL DO RIO GRANDE – FURG PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA OCEÂNICA

ANÁLISE DE CONFIABILIDADE DAS FUNDAÇÕES DA OBRA DE AMPLIAÇÃO DO CAIS DO TERMINAL DE CONTÊINERES DO PORTO DE RIO GRANDE (RS) APLICANDO METODOLOGIA BAYESIANA

THIAGO AMADORI

Dissertação apresentada à Comissão de Curso de Pós-Graduação em Engenharia Oceânica da Universidade Federal do Rio Grande, como requisito parcial à obtenção do título de Mestre em Engenharia Oceânica.

Orientador: Prof. Dr. Antônio Marcos de Lima Alves Co-orientador: Prof. Dr. Mauro de Vasconcellos Real

Rio Grande, julho de 2013

À minha família, especialmente à minha esposa Camila e à minha mãe Nereide.

AGRADECIMENTOS

Aos professores José Antônio Fontoura, Ana Maria de Azambuja, Paulo Roberto Teixeira e Cláudio Dias pelos conhecimentos transmitidos no decorrer do curso.

À Nilza, pela atenção dispensada em resolver prontamente as questões administrativas relativas ao curso.

Aos colegas de curso, funcionários e as pessoas que de alguma maneira contribuíram para que esta dissertação fosse concretizada.

Ao professor Mauro de Vasconcellos Real pelos conhecimentos transmitidos e pela co-orientação neste trabalho, sempre disposto a ajudar, tirar dúvidas e esclarecer muito atenciosamente.

Em especial, ao meu orientador, professor Antônio Marcos de Lima Alves pela extrema dedicação, interesse e tempo empregado com este trabalho, sempre presente em todas as etapas, conferindo e orientando passo a passo, sempre traçando um norte bem definido para o prosseguimento da dissertação.

E à minha família, minha mãe Nereide, meu irmão Vicente e especialmente minha esposa Camila, pelo apoio, paciência e constante incentivo em todas as etapas desta caminhada.

RESUMO

As obras de engenharia possuem incertezas oriundas das mais diversas fontes. Desde fatores humanos durante a execução, até incertezas quanto às propriedades mecânicas dos materiais empregados, passando por modelos matemáticos que não reproduzem por inteiro as condições físicas reais. Além disso, a hipótese do risco de ruína ser nulo em uma obra de engenharia é um conceito ultrapassado. Este entendimento requer uma análise mais realista quanto às probabilidades reais de falha das estruturas. Neste contexto, este trabalho apresenta uma metodologia de cálculo que procura inserir algumas incertezas ao cálculo do estaqueamento de um cais de porto, e calcula a probabilidade de ruína desta estrutura. Para a inserção das incertezas, são utilizados dados observados durante a execução do estaqueamento, os quais, através de simulações matemáticas e aplicação da análise estatística Bayesiana, permitem uma atualização da previsão da capacidade de carga das estacas. Esta atualização se dá por meio de distribuições de probabilidade "à priori" e "à posteriori". A distribuição "à priori" consiste no cálculo da capacidade de carga das estacas utilizando-se métodos semi-empíricos baseados em resultados de ensaios SPT (Standard Penetration Test). Já a distribuição "à posteriori" é obtida pela combinação da distribuição "à priori" e de uma função de verossimilhança, através da análise estatística Bayesiana. A função de verossimilhança, por sua vez, é obtida através de fórmulas dinâmicas de cálculo de resistência do solo, com a inserção de dados observados durante a cravação. Quanto ao cálculo da probabilidade de ruína da estrutura, esta é mensurada através de uma análise de confiabilidade, comparando-se as resistências com as cargas solicitantes da estrutura. Com isso, é calculada a probabilidade de falha da estrutura antes e depois da atualização da resistência do solo, assim como a verificação do ganho de confiabilidade advindo desta atualização. O estudo realiza-se no estaqueamento em água da obra do Berço III do Terminal de Contêineres de Rio Grande, TECON-RG, cujo projeto contempla um aumento de 250 metros lineares de cais, totalizando 300 estacas analisadas.

<u>Palavras-chave</u>: estacas, análise estatística, teorema de Bayes, capacidade de carga, análise de confiabilidade

ABSTRACT

Engineering works have uncertainties arising from various sources. From human factors during the execution, to uncertainties in the mechanical properties of the materials used, through mathematical models that do not reproduce in full the actual physical conditions. Besides that, in engineering, the possibility of zero risk of failure is an overpast concept. This understanding requires a more realistic analyses about the real probabilities of a structure to fail. In this context, this work presents a calculus methodology that seeks to insert some uncertainty to the calculation of a dock port piling, and calculates the failure probability of this structure. For the insertion of the uncertainties, are used data observed during the execution of staking, which, through mathematical simulations and application of Bayesian statistical analysis, allow an update of the forecast of load capacity of the piles. This update is given by probability distributions "priori" and "posteriori". The "priori" distribution consists in calculating the load capacity of the piles using semi-empirical methods based on results from SPT (Standard Penetration Test). The "posteriori" distribution is obtained by combining "priori" distribution and a likelihood function by Bayesian statistical analysis. The likelihood function, on the other hand, is obtained by dynamic formulas of soil resistance calculating, with the insertion of data observed during pile driving. For the structure fail probability calculation, this is measured by a reliability analysis, comparing resistances with demands. With this, it is calculated the structure failure probability before and after the update of soil resistance, as well as verification of the reliability gain arising this updating. The study is carried out on the water piling of the Cradle III at Rio Grande Container Terminal, TECON-RG, whose design comprises a rising of 250 meters of quay, totaling 300 analyzed piles.

Keywords: piles, statistical analysis, Bayes theorem, bearing capacity, reliability analysis.

SUMÁRIO

LISTA DE ABREVIATURAS E SIGLAS	9
LISTA DE TABELAS	10
LISTA DE FIGURAS	12
1 - INTRODUÇÃO	16
1.1 – OBJETIVOS	16
1.2 – COMPLEXO PORTUÁRIO DE RIO GRANDE	17
1.3 – DESCRIÇÃO DA OBRA ANALISADA	21
1.3.1 – Histórico	21
1.3.2 – Projeto e Obra do Berço III	25
1.3.3 – Características das Estacas	27
1.3.4 – Características dos Martelos de cravação	30
a) IHC SC-200	30
b) DELMAG – D44	31
1.4 – ESTRUTURA DO TRABALHO	33
2 - REVISÃO BIBLIOGRÁFICA	34
2.1 – PREVISÃO E OBSERVAÇÃO DA CAPACIDADE DE CARGA DE ESTACAS CRAVADAS	34
2.1.1 – Métodos semi-empíricos de previsão	34
a) Método de Aoki & Velloso (1975)	35
b) Método de Décourt & Quaresma (1978)	36
2.1.2 – Métodos de observação	36
a) Nega e Repique	37
b) Fórmulas Dinâmicas	38
c) Provas de Carga Estática	39
d) Ensaios de Carregamento Dinamico	42
2.2 – METODOLOGIA BAYESIANA DE ANALISE DE DADOS	43
2.3 – MÉTODO DE ROSENBLUETH	46
2.4 – MÉTODO DE MONTE CARLO	47
2.5 – MÉTODO DO SEGUNDO MOMENTO DE PRIMEIRA ORDEM	48
2.6 – TESTE DE KOLMOGOROV-SMIRNOV	49
2.7 – CONFIABILIDADE EM FUNDAÇÕES	49
2.7.1 – Probabilidade de ruína	51
2.7.2 – Índice de confiabilidade	52
3 – DISTRIBUIÇÃO DE PROBABILIDADES DAS CARGAS SOLICITANTES	54
3.1 – INTRODUÇÃO	54
3.2 – CARGAS AXIAIS SOLICITANTES POR ESTACA	54
4 – ESTIMATIVA "À PRIORI"	57

	4.1 – INTRODUÇÃO	57
	4.2 – ESTUDO DO SUBSOLO	57
	4.3 – PERFIL ESTRATIGRÁFICO DO SOLO	59
	4.4 – PROCEDIMENTO DE CÁLCULO	60
	4.5 – APLICAÇÃO DO MÉTODO FOSM PARA A DETERMINAÇÃO DOS PARÂMETROS DAS DISTRIBUIÇÕES "À PRIORI"	60
	 4.5.1 – Aplicação do método FOSM ao método de Aoki & Velloso 4.5.2 – Aplicação do método FOSM ao método de Décourt & Quaresma 	60 63
	4.6 – COMENTÁRIO SOBRE A VARIABILIDADE ORIUNDA DO ENSAIO TIPO SPT	67
	4.7 – CONDIÇÃO DE EMBUCHAMENTO DAS ESTACAS	68
	4.8 – RESULTADOS OBTIDOS	70
5 -	- FUNÇÃO DE VEROSSIMILHANÇA	74
	5.1 – INTRODUÇÃO	74
	5.2 – DEFINIÇÃO DO FATOR DE CORREÇÃO FC	74
	5.3 – COMENTÁRIO SOBRE O PESO DO MARTELO DE CRAVAÇÃO W	75
	5.4 – TRATAMENTO ESTATÍSTICO DAS NEGAS <i>s</i> , EFICIÊNCIA DO MARTELO <i>e</i> 1 E FATOR D CORREÇÃO <i>FC</i>	E 76
	5.4.1 – Distribuição das negas s :	77
	 5.4.2 – Distribuição da eficiência do martelo de cravação <i>e</i>1: 5.4.3 – Distribuição do Fator de Correção <i>FC</i>: 	81 83
	5.5 – VERIFICAÇÃO DA CORRELAÇÃO ENTRE AS VARIÁVEIS ALEATÓRIAS	84
	5.6 – CÁLCULO DA CAPACIDADE DE CARGA DAS ESTACAS ATRAVÉS DA FÓRMULA DINÂMICA DOS DINAMARQUESES	86
	5.6.1 – Aplicação do Método de Rosenblueth (ou Método das Estimativas Pontuais)	86
	5.6.2 – Aplicação do Método de Monte Carlo	91
	b) Simulação de Monte Carlo com variáveis aleatórias Beta	95
	5.7 – ESCOLHA DA FUNÇÃO DE VEROSSIMILHANÇA COM BASE NAS TÉCNICAS DE SIMULAÇÃO EFETUADAS	100
	5.8 – COMPARATIVO ENTRE A FUNÇÃO DE VEROSSIMILHANÇA E A ESTIMATIVA "À PRIO	RI" 101
6 -	- ESTIMATIVAS POSTERIORES	104
	6.1 – INTRODUÇÃO	104
	6.2 – RESULTADOS OBTIDOS	104
	6.3 – COMPARAÇÃO DAS ESTIMATIVAS POSTERIORES COM RESULTADOS DE PROVA DE CARGA ESTÁTICA E ENSAIOS DE CARREGAMENTO DINÂMICO	106
7 -	- ANÁLISES DE CONFIABILIDADE	110
-	7.1 – INTRODUCÃO	110
	7.2 – RESULTADOS OBTIDOS	110

8 – CONCLUSÕES E SUGESTÕES PARA FUTURAS PESQUISAS11	
8.1 – CONCLUSÕES	
8.2 – SUGESTÕES PARA FUTURAS PESQUISAS	
REFERÊNCIAS BIBLIOGRÁFICAS	115
ANEXOS	
A – BOLETINS DE SONDAGEM	119
B – PLANILHAS DE CÁLCULO DAS ESTIMATIVAS "À PRIORI"	139
C – TABELA DAS ELEVAÇÕES E NEGAS DAS ESTACAS	
D – TESTES DE KOLMOGOROV-SMIRNOV PARA AS DISTRIBUIÇÕES DAS NEGAS	151

LISTA DE ABREVIATURAS E SIGLAS

- CAPWAP Case Pile Wave Analysis Program
- CASE Case Western Reserve Institute
- CPT Piezocone Penetration Test
- DEF Deflectômetro
- FOSM First-Order, Second-Moment Method
- FS Fator de Segurança
- Mercosul Mercado Comum do Sul
- NBR Norma Brasileira
- PAC 2 Programa de Aceleração do Crescimento
- SPT Standard Penetration Test
- SUPRG Superintendência do Porto do Rio Grande
- TECON-RG Terminal de Contêineres de Rio Grande
- TEUs Twenty-foot equivalent unit

LISTA DE TABELAS

TABELA 3.1 – Cargas axiais solicitantes máximas por estaca
TABELA 4.1 – Valores do N _{SPT} para cada furo de sondagem
TABELA 4.2 – Parâmetros das distribuições "à priori" por furo de sondagem72
TABELA 4.3 – Parâmetros da distribuição "à priori" considerando toda a extensão da obra
TABELA 5.1 – Parâmetros das distribuições da negas por módulo e da amostra total77
TABELA 5.2 – Valores de $D_{máx}$ calculados pelo teste de Kolmogorov-Smirnov80
TABELA 5.3 – Dados referentes aos ensaios de carregamento dinâmico em 22 estacas da obra
TABELA 5.4 – Grandezas determinísticas das estacas e do martelo de cravação85
TABELA 5.5 – Correlação entre e_1 e <i>s</i> para três valores de Q_d atribuídos
TABELA 5.6 – Parâmetros das distribuições da negas por módulo e da amostra total
TABELA 5.7 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo1
TABELA 5.8 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo2
TABELA 5.9 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo3
TABELA 5.10 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo4
TABELA 5.11 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo590

TABELA 5.12 – Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – amostra
total das 300 estacas
TABELA 5.13 – Parâmetros das distribuições de Q_u calculados pelo método deRosenblueth
TABELA 5.14 – Limites superiores e inferiores das distribuições Beta das negas por módulo e da amostra total
TABELA 5.15 – Capacidade de carga das estacas obtidas pelos métodos de Rosenblueth e de Monte Carlo
TABELA 5.16 – Comparativo entre as estimativas "à priori" e as funções de verossimilhança por módulo e pela análise geral
TABELA 5.17 – Comparativo entre as profundidades previstas e as reais de assentamento das estacas
TABELA 6.1 – Estimativas "à posteriori", considerando o método de Aoki & Velloso nas estimativas "à priori"
TABELA 6.2 – Estimativas "à posteriori", considerando o método de Décourt & Quaresma nas estimativas "à priori"
TABELA 6.3 – Dados da prova de carga estática realizada na estaca nº 262106
TABELA 6.4 – Comparativo entre as estimativas posteriores, ensaios de carregamentodinâmico e prova de carga estática
TABELA 7.1 – Índice de confiabilidade, probabilidade de falha e coeficiente de segurança
global calculados pela combinação da distribuição das cargas solicitantes e das estimativas "à
priori"110
TABELA 7.2 – Índice de confiabilidade, probabilidade de falha e coeficiente de segurança global calculados pela combinação da distribuição das cargas solicitantes e das estimativas "à posteriori"

LISTA DE FIGURAS

Figura 1.1 – Localização da cidade do Rio Grande-RS (Fonte: Google Maps, 2012)17
Figura 1.2 – Antiga Barra do Rio Grande (Fonte: SUPRG, 2012)18
Figura 1.3 – Atual Barra do Rio Grande (Fonte: PAC 2, 2012)19
Figura 1.4 – Foto de satélite do Complexo Portuário de Rio Grande (Fonte: Google Maps, 2012)
Figura 1.5 – Foto aérea do Complexo Portuário de Rio Grande (Fonte: SUPRG, 2012)20
Figura 1.6 – Foto de satélite com a localização do TECON-RG (Fonte: Google Maps, 2012)
Figura 1.7 – Instalações do TECON-RG em 1997, ano de sua inauguração (Fonte: TECON, 2012)
Figura 1.8 – Instalações do TECON-RG no ano 2000, após a conclusão do Berço II de atracação (Fonte: TECON, 2012)22
Figura 1.9 – Instalações do TECON-RG no ano de 2003 (Fonte: TECON, 2012)22
Figura 1.10 – Instalações do TECON-RG após a conclusão do Berço III de atracação (Fonte: TECON, 2012)
Figura 1.11 – TECON-RG em operação (Fonte: SUPRG, 2012)23
Figura 1.12 – TECON-RG em operação (Fonte: SUPRG, 2012)24
Figura 1.13 – TECON-RG em operação (Fonte: SUPRG, 2012)24
Figura 1.14 – TECON-RG em operação (Foto: Felipe Dumont. Fonte: SUPRG, 2012)24
Figura 1.15 – Esquema da divisão do cais em módulos25
Figura 1.16 - seção transversal das estacas ao longo do seu comprimento (Fonte: Fagundes, 2007)
Figura 1.17 - seção transversal da ponta das estacas (Fonte: Fagundes, 2007)26

Figura 1.18 – Corte esquemático do cais (Fonte: Fagundes, 2007)27
Figura 1.19 – Armazenamento das estacas no canteiro de obras (Fonte: Fagundes, 2007)28
Figura 1.20 – Transporte das estacas até o local da cravação (Fonte: Fagundes, 2007)28
Figura 1.21 – Procedimento de içamento e posicionamento das estacas para cravação (Fonte Fagundes, 2007)
Figura 1.22 - Procedimento de cravação das estacas na água (Fonte: Fagundes, 2007)29
Figura 1.23 – Martelo IHC SC-200 (Fonte: Fagundes, 2007)
Figura 1.24 – Martelo Delmag - D44 (Fonte: Fagundes, 2007)
Figura 1.25 – Esquema do cepo, coxim e capacete (Fonte: Fagundes, 2007)32
Figura 2.1 - Parcelas das resistências de ponta e lateral em uma estaca sob solicitação de compressão
Figura 2.2 - Registro da nega e repique (Fonte: Alonso, 2009)
Figura 2.3 – Prova de carga com carga de reação
Figura 2.4 – Prova de carga com viga atirantada
Figura 2.5 – Curva pressão x recalque obtida a partir de uma prova de carga estática40
Figura 2.6 – Curva pressão x recalque indicando o valor da pressão de ruptura do sistema estaca-solo
Figura 2.7 – Teste de valores de σ_R para a obtenção de uma reta no gráfico semi-logarítmico $-ln\left(1-\frac{\sigma}{\sigma_R}\right) \ge r$ (Fonte: Alonso, 2009)
Figura 2.8 – Curva pressão x recalque extrapolada (Fonte: Alonso, 2009)42
Figura 2.9 - Relação entre as distribuições "à priori", a função de verossimilhança e a distribuição "à posteriori" (Cabral, 2008)
Figura 2.10 - Teste de Kolmogorov-Smirnov
Figura 2.11 – Valor determinístico usado para o dimensionamento

Figura 2.12 – Adoção de conceitos de Confiabilidade para a obtenção da grandeza em análise
Figura 2.13 – Abordagem determinística das cargas resistentes e solicitantes (Fonte: Cintra e Aoki, 2010)
Figura 2.14 – Distribuições de probabilidade das cargas Resistentes e Solicitantes (Fonte: Cintra e Aoki, 2010)
Figura 3.1 – Histograma da distribuição das cargas solicitantes por módulo55
Figura 3.2 – Histograma da distribuição das cargas solicitantes considerando todas as estacas da obra
Figura 4.1 – Zonas de influência dos furos de sondagem
Figura 4.2 – Perfil estratigráfico do solo (Fonte: Fagundes, 2007)
Figura 4.3 – Discretização das forças resistivas atuantes em uma estaca
Figura 4.4 – Configuração de resistências do solo na hipótese de embuchamento da estaca68
Figura 4.5 – Configuração de resistências do solo na hipótese de não embuchamento da estaca
Figura 4.6 – Verificação da penetração de solo dentro das estacas (Fonte: Fagundes, 2007).69
Figura 4.7 – Previsão da capacidade de carga "à priori", furo de sondagem SP.0170
Figura 4.8 – Previsão da capacidade de carga "à priori", furo de sondagem SP.0271
Figura 4.9 – Previsão da capacidade de carga "à priori", furo de sondagem SP.0371
Figura 4.10 – Previsão da capacidade de carga "à priori", furo de sondagem SP.0471
Figura 4.11 – Previsão da capacidade de carga "à priori", furo de sondagem SP.0572
Figura 5.1 – Decomposição da força inclinada do peso do martelo de cravação76
Figura 5.2 – Histograma dos valores medidos das negas no módulo 1
Figura 5.3 – Histograma dos valores medidos das negas no módulo 2

Figura 5.4 – Histograma dos valores medidos das negas no módulo 3	78
Figura 5.5 – Histograma dos valores medidos das negas no módulo 4	78
Figura 5.6 – Histograma dos valores medidos das negas do módulo 5	79
Figura 5.7 – Histograma dos valores medidos das negas da amostra total das estacas	79
Figura 5.8 – Teste de Kolmogorov-Smirnov – módulo 1 – distribuição Normal	81
Figura 5.9 – Correlação entre as variáveis aleatórias Nega e Eficiência do Martelo	86
Figura 5.10 – Distribuição de Q_u calculado por variáveis normais – módulo 1	92
Figura 5.11 – Distribuição de Q_u calculado por variáveis normais – módulo 2	93
Figura 5.12 – Distribuição de Q_u calculado por variáveis normais – módulo 3	93
Figura 5.13 – Distribuição de Q_u calculado por variáveis normais – módulo 4	94
Figura 5.14 – Distribuição de Q_u calculado por variáveis normais – módulo 5	94
Figura 5.15 – Distribuição de Q_u calculado por variáveis normais – amostra total	95
Figura 5.16 – Distribuição de Q_u calculado por variáveis beta – módulo 1	97
Figura 5.17 – Distribuição de Q_u calculado por variáveis beta – módulo 2	97
Figura 5.18 – Distribuição de Q_u calculado por variáveis beta – módulo 3	98
Figura 5.19 – Distribuição de Q_u calculado por variáveis beta – módulo 4	98
Figura 5.20 – Distribuição de Q_u calculado por variáveis beta – módulo 5	99
Figura 5.21 – Distribuição de Q_u calculado por variáveis beta – amostra total	99
Figura 6.1 – Curva carga x recalque obtida pela prova de carga estática realizada na est 262	taca nº 107
Figura 6.2 – Extrapolação de Van der Veen para a curva carga x recalque	108

1 - INTRODUÇÃO

1.1 – OBJETIVOS

O solo, visto como um material de construção, não possui a mesma homogeneidade que os demais materiais, como o aço e o concreto, por exemplo. Além disso, as prévias investigações geotécnicas, realizadas antes da execução das obras, não abrangem toda a massa de solo envolvida, pois inviabilizaria economicamente a obra.

Para equilibrar, e tentar inserir parte destas incertezas oriundas não só dos materiais, como também da execução dos serviços, assim como dos equipamentos empregados, os projetos adotam coeficientes de segurança que, por vezes, majoram as cargas solicitantes, e por vezes minoram as capacidades resistentes dos materiais. Esta é a forma clássica, regulamentada pelas Normas Técnicas, de tentar tratar os fenômenos da engenharia através de modelos matemáticos.

Se, durante a execução da obra, for possível a obtenção de dados que possibilitem um acréscimo de informação sobre o fenômeno estudado, esta obra terá uma diminuição na sua gama de incertezas e consequentemente um ganho de confiabilidade.

O objetivo deste estudo é utilizar dados observados durante a execução da obra para, através do emprego de conceitos e técnicas estatísticas, efetuar uma atualização da capacidade resistente do solo, calculada por ocasião do projeto. Ainda, com a capacidade de carga do solo atualizada, será realizada uma análise de confiabilidade, comparando-se as resistências com as cargas solicitantes da estrutura. Com isso, será calculada a probabilidade de falha da estrutura antes e depois da atualização da resistência do solo, assim como a verificação do ganho de confiabilidade advindo desta atualização.

O estudo será realizado em um estaqueamento em água da obra de ampliação do Berço III do Terminal de Contêineres de Rio Grande, TECON-RG, cujo projeto contempla um aumento de 250 metros lineares de cais, subdivididos em cinco módulos de 50 metros de comprimento, apoiados sobre 60 estacas cada, totalizando 300 estacas na obra.

1.2 - COMPLEXO PORTUÁRIO DE RIO GRANDE

A cidade do Rio Grande localiza-se ao sul do estado do Rio Grande do Sul, na embocadura da Lagoa dos Patos, conforme mostrado na Figura 1.1. Devido às suas características geográficas, possui grande vocação para o desenvolvimento da atividade marítima e portuária. A existência de um canal natural, posteriormente fixado e aperfeiçoado pelo homem, permitindo a entrada e saída de embarcações do Oceano Atlântico, possibilitou o desenvolvimento de um porto de dimensões nacionais e colocou a cidade de Rio Grande entre os principais polos do país para o desenvolvimento da atividade.

Figura 1.1 – Localização da cidade do Rio Grande-RS (Fonte: Google Maps, 2012)

O primeiro registro de transposição da Barra do Rio Grande data de 1737, quando da chegada do Brigadeiro José da Silva Paes, para iniciar o povoamento da região (SUPRG, 2012). Na Figura 1.2 a seguir, é mostrada a antiga Barra do Rio Grande.

Figura 1.2 – Antiga Barra do Rio Grande (Fonte: SUPRG, 2012)

Em 1846 o Governo Imperial criou a Inspetoria da Praticagem da Barra, gerando uma diminuição considerável no número de acidentes ocorridos durante sua transposição.

Esta medida fomentou o tráfego de embarcações através da Barra, dando origem a um pequeno porto, onde hoje se localiza o Porto Velho, no centro da cidade.

A partir de 1855, diversas tentativas frustradas foram tomadas para tentar prolongar o leito do rio e dar maior força à corrente, com consequente aprofundamento do canal, que na época não passava de 3,6 metros de profundidade.

Somente em 1855, Sir John Hawkshaw, comissionado pelo Governo Imperial, em visita à Barra do Rio Grande, propôs a criação de quebra-mares, um de cada lado da embocadura, com pouco mais de três quilômetros de extensão cada, com o propósito de fixar a Barra.

Em 1906 o governo brasileiro contratou o engenheiro Elmer Lawrence Cortheill para a execução da obra de aprofundamento da barra para 10 metros, criação de um porto, hoje conhecido como Porto Novo e construção dos molhes leste e oeste, os quais foram prontificados em 1915.

O primeiro navio a transpor a Barra do Rio Grande após a obra foi o navio-escola Benjamin Constant, da Armada Nacional, no dia 1º de março de 1915, calando 6,35 metros (SUPRG, 2012). Desde sua inauguração até os dias de hoje, o Porto do Rio Grande permaneceu em constante crescimento, sendo atualmente o concentrador de cargas do Mercosul.

De 2001 a 2010 os molhes da Barra passaram por uma obra de ampliação para facilitar o processo natural de aprofundamento do canal devido ao aumento da velocidade da corrente. O molhe leste, que possuía 4,2 quilômetros de extensão, foi ampliado em mais 370 metros e o molhe oeste, que possuía 3,16 quilômetros, foi ampliado em mais 700 metros.

Na Figura 1.3 a seguir, é mostrada a Barra do Rio Grande nos dias atuais:

Figura 1.3 – Atual Barra do Rio Grande (Fonte: PAC 2, 2012)

Nas Figuras 1.4 e 1.5 a seguir, são mostradas as três áreas portuárias atuais da cidade do Rio Grande.

Figura 1.4 – Foto de satélite do Complexo Portuário de Rio Grande (Fonte: Google Maps, 2012)

Figura 1.5 – Foto aérea do Complexo Portuário de Rio Grande (Fonte: SUPRG, 2012)

1.3 - DESCRIÇÃO DA OBRA ANALISADA

1.3.1 – Histórico

O Terminal de Contêineres de Rio Grande, TECON-RG localiza-se no Super Porto do complexo portuário de Rio Grande, e foi criado, em 1997, a partir da licitação do Terminal de Contêineres do Porto do Rio Grande, sob administração de Wilson, Sons de Comércio Ltda.

Na Figura 1.6 a seguir é mostrada a foto de satélite da área onde se localiza o TECON/RG:

Figura 1.6 – Foto de satélite com a localização do TECON-RG (Fonte: Google Maps, 2012)

Na Figura 1.7 é apresentado o TECON-RG no ano de sua inauguração, em 1997:

Figura 1.7 – Instalações do TECON-RG em 1997, ano de sua inauguração (Fonte: TECON,

Naquele ano, o TECON-RG movimentou 90.975 TEUs (em inglês "Twenty-foot equivalent unit"), unidade que corresponde a um contêiner de seis metros de comprimento. (TECON, 2012).

No ano de 1999, o TECON-RG dobrou sua movimentação e iniciou a construção do Berço II de atracação, o qual foi concluído no ano 2000, possibilitando, pela primeira vez, a operação de dois navios simultaneamente, conforme é mostrado na Figura 1.8.

Figura 1.8 – Instalações do TECON-RG no ano 2000, após a conclusão do Berço II de atracação (Fonte: TECON, 2012)

No ano de 2003, o TECON-RG atingiu a marca de um milhão de contêineres movimentados e no ano de 2005 movimentou 670.319 TEUs e operou 1.131 navios e barcaças, números muito superiores aos do ano de sua instalação, que foi de apenas 285 navios operados e 90.975 TEUs. (TECON, 2012).

Na Figura 1.9 a seguir, é mostrado o TECON-RG no ano de 2003:

Figura 1.9 – Instalações do TECON-RG no ano de 2003 (Fonte: TECON, 2012)

Em 2005, o TECON-RG foi responsável por 99% da carga conteinerizada do Complexo Portuário do Rio Grande (TECON, 2012).

No ano de 2008, foi inaugurado o Berço III de atracação, o qual é objeto deste trabalho, e permitiu ao TECON-RG, pela primeira vez, operar três navios simultaneamente, conforme mostrado na Figura 1.10 a seguir:

Figura 1.10 – Instalações do TECON-RG após a conclusão do Berço III de atracação (Fonte: TECON, 2012)

Atualmente, o TECON-RG possui capacidade de movimentação de 1.250.000 TEUs por ano (Fagundes, 2012) e concentra praticamente toda a carga conteinerizada do Complexo Portuário da cidade do Rio Grande.

Nas Figuras 1.11 a 1.14 a seguir é mostrado o TECON-RG em operação:

Figura 1.11 – TECON-RG em operação (Fonte: SUPRG, 2012)

Figura 1.12 – TECON-RG em operação (Fonte: SUPRG, 2012)

Figura 1.13 – TECON-RG em operação (Fonte: SUPRG, 2012)

Figura 1.14 – TECON-RG em operação (Foto: Felipe Dumont. Fonte: SUPRG, 2012)

1.3.2 - Projeto e Obra do Berço III

A concepção estrutural do projeto de ampliação do cais consistiu na execução de uma plataforma rígida apoiada sobre estacas (as quais constituem o objeto deste estudo), além da execução de uma cortina atirantada de estacas prancha para contenção dos esforços de empuxo do solo.

Para efeito de cálculo e projeto, o Berço III foi subdividido em cinco módulos de 50 metros cada, totalizando 250 metros lineares de ampliação, conforme mostrado no esquema da Figura 1.15.

Figura 1.15 – Esquema da divisão do cais em módulos

As estacas componentes do novo cais são em concreto protendido, de seção transversal anelar, com comprimento de 48 metros, diâmetro externo de 80 centímetros, espessura de parede de 15 centímetros, e diâmetro interno de 50 centímetros, sendo que parte delas são verticais e parte inclinadas na proporção de 1 (H) : 4 (V), o que corresponde a um ângulo de 14,04°. A carga de trabalho de projeto é de 3237 KN (330 tf) e o f_{ck} do concreto das estacas é de 40MPa. (Fagundes, 2007).

Nas Figuras 1.16 e 1.17 a seguir é apresentada a seção transversal das estacas ao longo do seu comprimento e na ponta.

Figura 1.16 - seção transversal das estacas ao longo do seu comprimento (Fonte: Fagundes, 2007).

Figura 1.17 - seção transversal da ponta das estacas (Fonte: Fagundes, 2007).

Na Figura 1.18 a seguir, apresenta-se um corte transversal da ampliação, mostrando as estacas verticais e inclinadas, assim como a cortina de estacas prancha, e a plataforma rígida do cais.

Figura 1.18 – Corte esquemático do cais (Fonte: Fagundes, 2007).

1.3.3 – Características das Estacas

O presente estudo é baseado em dados obtidos durante a cravação das estacas que compõem a obra de ampliação do cais do TECON.

Cada um dos cinco módulos é apoiado sobre 60 estacas, totalizando 300 estacas, as quais compõem o universo amostral da pesquisa.

Nas Figuras 1.19 a 1.22 a seguir, podem ser visualizados os procedimentos de armazenamento, transporte, içamento e cravação das estacas.

Figura 1.19 – Armazenamento das estacas no canteiro de obras (Fonte: Fagundes, 2007)

Figura 1.20 – Transporte das estacas até o local da cravação (Fonte: Fagundes, 2007)

Figura 1.21 – Procedimento de içamento e posicionamento das estacas para cravação (Fonte: Fagundes, 2007)

Figura 1.22 - Procedimento de cravação das estacas na água (Fonte: Fagundes, 2007)

1.3.4 - Características dos Martelos de cravação

Para a cravação das estacas, foram utilizados dois tipos de martelo de cravação, os quais serão apresentados a seguir.

a) IHC SC-200

É um martelo hidráulico, da marca IHC, modelo SC-200 (ECH – External Combustion Hammer), o qual possui um pilão de peso igual a 134,390 kN (13,7 tf) e a energia máxima especificada pelo fabricante igual a 207kJ (204,83 kN.m ou 20,88 tf.m), que corresponde a uma altura de queda de 1,54 m.

Por possuir condições de gerar a energia necessária para mobilizar a carga nas estacas, esse martelo foi utilizado nas estacas verticais durante toda a cravação, porém com a redução de energia na passagem da camada compressível para que a estaca não sofresse esforços elevados de tração que pudessem danificar a estaca, e nas estacas inclinadas para obtenção da nega. (Fagundes, 2007).

Antes do impacto, o pilão é acelerado por um gás pressurizado acima dele e alcança uma aceleração de 2 g. Isto permite reduzir o curso máximo necessário e ao mesmo tempo aumenta o número de golpes do martelo.

No sistema de cravação foi considerado um sistema amortecedor conforme dados do fabricante, com peso do capacete de 12,233 kN (1,25 tf), altura do cepo de 457 mm e área da seção transversal do cepo de 0,77 m².

Para o coxim foi considerado um conjunto de chapas de madeira compensada com espessura total de 100 mm e com seção transversal igual à seção transversal de concreto. (Fagundes, 2007).

A altura de queda utilizada para a cravação das estacas com o martelo IHC SC-200 foi de 1 metro.

Na Figura 1.23 a seguir, é apresentado o martelo IHC SC-200:

Figura 1.23 – Martelo IHC SC-200 (Fonte: Fagundes, 2007)

b) DELMAG – D44

É um martelo baseado na explosão de óleo diesel pulverizado em câmara de combustão denominado Delmag D44 (OED - Open End Diesel), com um pilão de peso igual a 42,275 kN (4,31 tf), energia potencial máxima de 122,625 kN.m (12,5 tf.m), que corresponde a uma altura de queda máxima de 2,89m.

Este sistema de cravação não oferecia energia suficiente para mobilizar a carga necessária na estaca, porém o martelo IHC SC-200 por possuir um peso superior ao Delmag D44, danificava as bordas das cabeças das estacas inclinadas, então optou-se por atravessar as camadas moles com o martelo Delmag – D44 e utilizar o IHC apenas para obtenção da nega estipulada no projeto. (Fagundes, 2007).

No sistema de cravação foi considerado um sistema amortecedor conforme dados fornecidos pelo fabricante, com pesos do capacete de 10 kN (1,02 tf), altura do cepo de 250 mm e área de seção transversal de cepo de 0,27 m².

Para o coxim foi considerado um conjunto de chapas de madeira compensada com espessura total de 75 mm e com seção transversal igual à seção transversal de concreto. (Fagundes, 2007).

A altura de queda utilizada para a cravação das estacas com o martelo Delmag – D44 foi de 1 metro.

Na Figura 1.24 a seguir, é apresentado o martelo Delmag - D44:

Figura 1.24 – Martelo Delmag - D44 (Fonte: Fagundes, 2007)

O cepo e o coxim, citados nas descrições dos martelos, são acessórios utilizados no topo da estaca junto com um capacete para amortecer o impacto dos golpes do martelo na estaca e uniformizar as tensões aplicadas na mesma.

Na Figura 1.25 a seguir, é mostrado um esquema do cepo, coxim e capacete:

Figura 1.25 – Esquema do cepo, coxim e capacete (Fonte: Fagundes, 2007)

1.4 – ESTRUTURA DO TRABALHO

O presente trabalho foi dividido em oito Capítulos e quatro Anexos. No capítulo 1, faz-se uma introdução à pesquisa, mostrando seus objetivos, além de um breve histórico e descrição da cidade do Rio Grande e sua vocação para as atividades marítimas e portuárias, e uma descrição sucinta da obra.

No Capítulo 2, são apresentados os métodos de previsão e observação da capacidade de carga de estacas, assim como o ferramental estatístico utilizado no trabalho. Por fim, descreveu-se o procedimento a ser realizado por ocasião da análise de confiabilidade.

O Capítulo 3 apresenta as cargas solicitantes da estrutura obtidas dos memoriais de cálculo do TECON-RG.

No Capítulo 4, é apresentado o estudo do subsolo e são desenvolvidas as estimativas "à priori".

O Capítulo 5 apresenta o procedimento realizado para a obtenção das funções de verossimilhança.

No Capítulo 6, são desenvolvidas as estimativas posteriores, que consistem na atualização das estimativas "à priori", pela combinação destas com as funções de verossimilhança, através da aplicação da teoria Bayesiana.

No Capítulo 7, são efetuadas as análises de confiabilidade da estrutura.

O Capítulo 8 apresenta um resumo com uma análise dos resultados obtidos e sugestões para futuras pesquisas.

Ao final deste documento encontram-se as Referências Bibliográficas utilizadas para a confecção deste trabalho e os Anexos A, B, C e D.

2 - REVISÃO BIBLIOGRÁFICA

2.1 – PREVISÃO E OBSERVAÇÃO DA CAPACIDADE DE CARGA DE ESTACAS CRAVADAS

2.1.1 – Métodos semi-empíricos de previsão

São métodos que relacionam estatisticamente a capacidade de carga de estacas com resultados de ensaios de prospecção de campo. No Brasil, são muito utilizados métodos baseados no número de golpes necessários para penetração do amostrador padrão do ensaio de SPT (Standard Penetration Test), o N_{SPT} .

Neste trabalho serão apresentados os métodos de Aoki & Velloso e Décourt & Quaresma, embora existam outros métodos também utilizados na previsão da capacidade de carga de estacas, inclusive fora do país.

A capacidade de carga de uma estaca é composta pelo somatório de duas parcelas de resistência: a resistência de ponta e a resistência por atrito lateral, conforme mostrado na Figura 2.1 a seguir:

Figura 2.1 - Parcelas das resistências de ponta e lateral em uma estaca sob solicitação de compressão

a) Método de Aoki & Velloso (1975)

O método de Aoki & Velloso originou-se da relação entre dados de provas de carga em estacas e ensaios CPT. Porém, como no Brasil o ensaio CPT não é tão amplamente difundido como é o SPT, o método permite o cálculo da previsão da capacidade de carga usando como dados de entrada os valores do ensaio SPT, através de fatores de correlação ke α que dependem do tipo de solo.

Dessa forma, a capacidade de carga do solo que servirá de apoio para a estaca é determinada pela seguinte equação:

$$Q_{u} = \frac{A_{b}.k}{F1}.N_{b,n} + \sum_{i=1}^{n} \frac{U.\Delta L_{i}.\alpha.k}{F2}.N_{i}$$
(2.1)

Onde:

 A_b = área da ponta da estaca;

U = perímetro da estaca;

 ΔL_i = comprimento de cada segmento em que a estaca foi subdividida para efeito de cálculo; $N_{b,n}$ = média aritmética entre o valor do N_{SPT} medido na profundidade anterior à posição da ponta da estaca, na profundidade da ponta e na profundidade posterior à posição da ponta da estaca;

 N_i = valor do N_{SPT} medido na profundidade onde o trecho da estaca está localizado.

 $k e \alpha$ são fatores de correlação que dependem do tipo de solo, os quais foram posteriormente adaptados por Laprovitera (1988) com base nos valores modificados por Danziger (1982); e F1 e F2 são fatores de correção que levam em conta o fator de escala entre o protótipo (estaca) e o modelo (cone). Os valores originais destes coeficientes propostos por Aoki & Velloso foram posteriormente modificados por Laprovitera (1988) e Benegas (1993). Cabe ressaltar que o método de Aoki & Velloso limita os valores de N_{SPT} em 50 golpes.

b) Método de Décourt & Quaresma (1978)

No método de Décourt & Quaresma a previsão da capacidade de carga do solo que servirá de apoio à estaca, é definida apenas com dados do ensaio SPT. Este método foi desenvolvido primeiramente para o cálculo de estacas pré-moldadas de concreto. Posteriormente, foi ampliado para outros tipos de estacas como escavadas em geral, hélice contínua e injetadas sob pressão. Por fim, Décourt (1996) introduziu fatores de correção nas parcelas de resistência de ponta e lateral para chegar, dessa forma, à seguinte expressão que define a capacidade de carga de uma estaca:

$$Q_u = A_b \cdot C_1 \cdot C_2 \cdot N_{b,n} + 10 \cdot C_3 \cdot U \cdot L_n \cdot \left(\frac{N_{s,n}}{3} + 1\right)$$
(2.2)

Onde:

 A_b = área da ponta da estaca;

U = perímetro da estaca;

 $L_n = \acute{e}$ o comprimento total da estaca;

 C_1 = fator relacionado ao tipo de solo onde a ponta da estaca está imersa;

 $C_2 \in C_3$ = fatores relacionados ao tipo de solo e ao tipo de estaca;

 $N_{b,n}$ = média aritmética entre o valor do N_{SPT} medido na profundidade anterior à posição da ponta da estaca, na profundidade da ponta e na profundidade posterior à posição da ponta da estaca;

 $N_{s,n}$ = valor médio de N_{SPT} ao longo do comprimento da estaca, excluídos os valores de N_{SPT} utilizados no cálculo de $N_{b,n}$;

Para o cálculo de $N_{b,n}$ e $N_{s,n}$ os valores de N_{SPT} inferiores a 3 e superiores a 50 devem ser considerados iguais a 3 e 50 respectivamente.

2.1.2 – Métodos de observação

Além da previsão da capacidade de carga de estacas pelos métodos semi-empíricos conforme apresentado anteriormente, a observação de alguns parâmetros e a realização de ensaios durante e após a execução do estaqueamento, podem dar uma ideia da capacidade de carga que as estacas terão.
Dentre estes procedimentos, os mais amplamente adotados na construção civil são os métodos de observação da nega e repique, o uso de fórmulas dinâmicas, as provas de carga estáticas e os ensaios de carregamento dinâmico, os quais são descritos a seguir:

a) Nega e Repique

Em estacas cravadas à percussão, como é o caso das estacas do presente estudo, a nega pode ser entendida como a penetração permanente da estaca, provocada por um golpe do martelo, ao final da cravação.

Geralmente o valor da nega é estimado em projeto, e durante a cravação da estaca, utiliza-se este valor como critério de paralisação. Porém, além da função de critério de parada da cravação, a observação das negas possui como objetivo a uniformização do estaqueamento, buscando-se obter negas aproximadamente iguais para estacas com cargas e dimensões também aproximadamente iguais, desde que o terreno seja homogêneo.

O repique, por sua vez, representa a parcela elástica do deslocamento de uma seção da estaca, no momento de sua cravação. Este parâmetro pode ser obtido, por exemplo, movendose lentamente um lápis sobre uma folha de papel fixada à estaca, durante a cravação.

Cabe ressaltar que o repique é composto por duas parcelas: a deformação elástica do material componente da estaca, e a deformação elástica do solo sob a ponta da estaca.

Na Figura 2.2 a seguir é mostrada uma estaca no momento da cravação, com o registro da nega e repique:

Figura 2.2 - Registro da nega e repique (Fonte: Alonso, 2009)

b) Fórmulas Dinâmicas

São métodos que permitem estimar a resistência do solo, no momento da cravação de uma estaca, a partir de observações durante a cravação. As fórmulas dinâmicas foram estabelecidas pela comparação entre a energia disponibilizada na cabeça da estaca e aquela gasta para romper o solo, somada às perdas (Alonso, 2009), conforme a equação a seguir:

$$W.h = R.s + perdas \tag{2.3}$$

Onde:

W = peso do martelo de cravação;
h = altura de queda do martelo;
R = resistência do solo à penetração da estaca;
s = nega correspondente ao valor de h.

Existem inúmeras fórmulas dinâmicas descritas na literatura para previsão da capacidade de carga de estacas. No presente estudo, será adotada a Fórmula dos Dinamarqueses, cuja equação é descrita a seguir:

$$Q_{d} = \frac{e_{1}.W.h}{s + \frac{1}{2}\sqrt{2.e_{1}.W.h.\frac{L}{E.A}}}$$
(2.4)

Onde:

 Q_d = resistência (dinâmica) do solo à penetração da estaca, no momento da cravação;

 e_1 = eficiência do martelo de cravação;

W = peso do martelo;

h = altura de queda do martelo;

s = nega correspondente ao valor de h;

L =comprimento da estaca;

E = módulo de elasticidade da estaca;

A =área da seção transversal da estaca.

c) Provas de Carga Estática

Consistem na aplicação de cargas às fundações e medida dos seus correspondentes recalques. Os carregamentos são aplicados em estágios, sendo que cada novo estágio de carga só é iniciado quando o anterior estiver estabilizado. As pressões exercidas sobre o solo podem chegar ao valor da carga de ruptura do solo, ou a n vezes o valor da carga de trabalho da fundação. A norma brasileira NBR 12131 (2006) define os procedimentos a serem seguidos no ensaio.

Nas Figuras 2.3 e 2.4 a seguir, encontram-se, respectivamente, a realização de prova de carga com carga de reação e com viga atirantada.

Figura 2.3 – Prova de carga com carga de reação

Figura 2.4 – Prova de carga com viga atirantada

Segundo Alonso (2009), esse procedimento de controle da capacidade de carga é a melhor maneira de se comprovar a resistência limite de uma fundação isolada, principalmente se a mesma for profunda (estaca ou tubulão).

Na Figura 2.5 a seguir, apresenta-se o gráfico de pressão x recalque, obtido a partir de uma prova de carga estática:

Figura 2.5 – Curva pressão x recalque obtida a partir de uma prova de carga estática

Nota-se, pelo gráfico da Figura 2.6, que se a estaca for suficientemente carregada, pode-se chegar à ruptura do sistema estaca-solo:

Figura 2.6 – Curva pressão x recalque indicando o valor da pressão de ruptura do sistema estaca-solo

Porém, em certos casos, pode ocorrer que ao se realizar a prova de carga estática, não se obtenha um valor bem definido (nítido) da pressão de ruptura. Nestes casos, existem métodos de extrapolação da curva pressão x recalque para que seja estimado o valor da carga de ruptura.

No Brasil, o método de Van der Veen (1953) é um dos mais utilizados para se efetuar a extrapolação da curva pressão x recalque, o qual é descrito pela seguinte equação:

$$\sigma = \sigma_R (1 - e^{-\alpha . r}) \tag{2.5}$$

Onde:

 σ e r é um par qualquer de coordenadas da curva pressão x recalque;

 σ_R é a pressão de ruptura; e

 α é um coeficiente que depende da forma da curva.

O procedimento de cálculo consiste em testar vários valores da pressão de ruptura (σ_R) do solo, até que se obtenha uma reta no gráfico semi-logarítmico $-ln(1-\frac{\sigma}{\sigma_R}) \ge r$, conforme mostrado na Figura 2.7 a seguir:

Figura 2.7 – Teste de valores de σ_R para a obtenção de uma reta no gráfico semi-logarítmico $-ln\left(1-\frac{\sigma}{\sigma_R}\right) \ge r$ (Fonte: Alonso, 2009)

Na Figura 2.8 a seguir, mostra-se uma curva pressão x recalque extrapolada:

Figura 2.8 – Curva pressão x recalque extrapolada (Fonte: Alonso, 2009)

O trecho I na Figura 2.8 acima, indica a região onde se conhecem os pares x dos diversos pontos da curva, enquanto o trecho II indica a região extrapolada.

O método de Van der Veen foi posteriormente generalizado por Aoki (1976), resultando na seguinte equação:

Esta adaptação torna o método mais abrangente, possibilitando que a curva se inicie em um ponto que não a origem do gráfico.

d) Ensaios de Carregamento Dinâmico

Os ensaios de carregamento dinâmico consistem na aplicação de golpes de martelo com energia crescente no topo da estaca. Através da instalação, no topo da estaca, de um par de transdutores de deformação e de um par de acelerômetros, medem-se as ondas de tensão que trafegam na estaca por decorrência da aplicação dos golpes.

As ondas de tensão medidas pela instrumentação podem ser analisadas através de programas computacionais, que se valem de princípios de propagação de ondas em barras e de modelos de mobilização da resistência dinâmica do solo. As análises fornecem como resultado, dentre outras informações, a resistência estática mobilizada em cada golpe do martelo.

Um resumo a respeito dos modelos e métodos de análise baseados na propagação de ondas em estacas pode ser encontrado em Alves et (al). (2004). A norma brasileira NBR 13208 (2007) indica os procedimentos a serem seguidos no ensaio.

2.2 – METODOLOGIA BAYESIANA DE ANÁLISE DE DADOS

O Teorema de Bayes é uma ferramenta estatística que permite calcular a probabilidade condicional de ocorrência de um evento, dada a ocorrência de outro evento correlacionado ao primeiro.

A análise Bayesiana também permite o acréscimo de informações ao sistema através do uso de uma função de verossimilhança, fazendo com que a amostra não seja a única fonte de informação. Com esse procedimento, pode-se atualizar o nível de conhecimento sobre a amostra, mesmo que posteriormente à obtenção dos dados amostrais.

A seguir o teorema de Bayes é apresentado:

$$p(A_i|B) = \frac{p(B|A_i).p(A_i)}{\sum_{i=1}^{m} p(B|A_i).p(A_i)}$$
(2.7)

Onde:

 $p(A_i|B)$ = probabilidade condicional de ocorrência do evento A_i , sabendo-se que o evento B ocorreu, também chamada de probabilidade posterior ou "à posteriori";

 $p(B|A_i)$ = probabilidade condicional de ocorrência do evento *B*, sabendo-se que o evento A_i ocorreu, também chamada de função de verossimilhança (aqui entra a informação extra ao sistema);

 $p(A_i)$ = probabilidade de ocorrência do evento A_i , também chamada de probabilidade anterior ou "à priori".

Maiores detalhes sobre o teorema de Bayes podem ser obtidos em Ang e Tang (1984).

Aplicando o Teorema de Bayes à análise de fundações, podemos realizar uma atualização da capacidade de carga das estacas, com o acréscimo de informações obtidas durante a cravação.

No presente estudo, o uso da fórmula dinâmica dos Dinamarqueses, alimentada com os valores observados das negas das estacas, possibilitará a obtenção da informação extra a ser inserida no sistema, o que também pode ser chamada de função de verossimilhança.

Os valores "à priori" da capacidade de carga das estacas, calculados pelos métodos de Aoki & Velloso e Décourt & Quaresma, podem ser combinados através do Teorema de Bayes aos valores obtidos da função de verossimilhança, obtendo-se assim valores "à posteriori", que constituem valores atualizados da capacidade de carga das estacas.

Na Figura 2.9 a seguir são mostradas as distribuições de probabilidade hipotéticas das funções "à priori", função de verossimilhança, e função "à posteriori" das resistências do solo durante a cravação de estacas.

Figura 2.9 - Relação entre as distribuições "à priori", a função de verossimilhança e a distribuição "à posteriori" (Cabral, 2008)

Espera-se que a distribuição "à posteriori" possua uma dispersão menor que a distribuição inicial ("à priori"), uma vez que foram inseridas mais informações ao sistema, através da função de verossimilhança, o que tende a reduzir a incerteza associada.

As equações a seguir, apresentadas por Lacasse e Goulois (1989) e Lacasse *et al.* (1991) apud Cabral (2008) e Magalhães (2011), permitem o cálculo do valor esperado e da

variância da distribuição "à posteriori", que é a distribuição da resistência atualizada da capacidade de carga das estacas após observações da cravação:

$$\mu_Q = \frac{\sigma_Q^{2,L} \cdot \mu_Q^P + \sigma_Q^{2,P} \cdot \mu_Q^L}{\sigma_Q^{2,L} + \sigma_Q^{2,P}}$$
(2.8)

$$\sigma_Q^2 = \frac{\sigma_Q^{2,L} \cdot \sigma_Q^{2,P}}{\sigma_Q^{2,L} + \sigma_Q^{2,P}}$$
(2.9)

Onde:

 μ_Q = valor esperado da distribuição atualizada da capacidade de carga (distribuição "à posteriori");

 σ_Q^2 = variância da distribuição atualizada da capacidade de carga (distribuição "à posteriori"); μ_Q^P = valor esperado da distribuição da capacidade de carga calculada anteriormente à cravação ("distribuição à priori");

 $\sigma_Q^{2,P}$ = variância da distribuição da capacidade de carga calculada anteriormente à cravação ("distribuição à priori");

 μ_Q^L = valor esperado da distribuição da capacidade de carga calculada a partir de dados observados durante a cravação (função de verossimilhança);

 $\sigma_Q^{2,L}$ = variância da distribuição da capacidade de carga calculada a partir de dados observados durante a cravação (função de verossimilhança);

Cabe ressaltar que a aplicação das equações 2.8 e 2.9 requer normalidade e independência entre as distribuições de probabilidade "à priori" e a função de verossimilhança.

Guttormsen (1987), apud Cabral (2008) e Magalhães (2011) ilustra ainda a possibilidade do cálculo da eficiência da atualização. Para tanto, o autor desenvolveu um indicador de falha ("failure indicator"), que mostra quão satisfatória foi a atualização. Segundo ele, o indicador de falha representa a diferença entre a estimativa "à priori" e aquela obtida pela função de verossimilhança, normalizada em relação à raiz quadrada da soma da variância da estimativa "à priori" e da obtida pela função de verossimilhança.

O indicador de falha é calculado pela seguinte expressão:

$$D = \frac{\mu_Q^L - \mu_Q^P}{\sqrt{\left(\sigma_Q^{2,L} + \sigma_Q^{2,P}\right)}}$$
(2.10)

As conclusões de Guttormsen (1987) sobre o cálculo do indicador de falha são as seguintes:

• um valor de D igual a zero indica que a estimativa "à priori" e a obtida da função de verossimilhança são iguais. A atualização, neste caso, somente influenciará (reduzirá) a variância da estimativa "à posteriori".

• um pequeno valor de D (menor que ± 1,5) indica uma atualização satisfatória da resistência oferecida durante a cravação.

• um valor positivo de D indica que a estimativa "à posteriori" será superior àquela obtida "à priori".

• um valor negativo de D indica que a estimativa "à posteriori" será inferior àquela obtida "à priori".

2.3 – MÉTODO DE ROSENBLUETH

O Método de Rosenblueth ou Método das Estimativas Pontuais consiste na determinação de parâmetros probabilísticos de uma grandeza a partir de parâmetros probabilísticos das variáveis independentes a ela associadas (Alves, 2000).

O método foi originalmente publicado em Rosenblueth (1975 e 1981).

Segundo o método, para uma função de três variáveis aleatórias $Y = f(X_1, X_2, X_3)$, o valor esperado para a função é dado por:

$$E[Y] = p_{y+++}y_{+++} + p_{y---}y_{---} + p_{y++-}y_{++-} + p_{y--+}y_{-++} + p_{y+-+}y_{++-} + p_{y+--}y_{+--} + p_{y-++}y_{-++} + p_{y-++}y_{-++}$$
(2.11)

onde:

$$p_{y+++} = p_{y---} = \frac{1}{2^3} (1 + \rho_{12} + \rho_{23} + \rho_{31})$$
(2.12)

$$p_{y++-} = p_{y--+} = \frac{1}{2^3} (1 + \rho_{12} - \rho_{23} - \rho_{31})$$
(2.13)

$$p_{y+-+} = p_{y-+-} = \frac{1}{2^3} (1 - \rho_{12} - \rho_{23} + \rho_{31})$$
(2.14)

$$p_{y+--} = p_{y-++} = \frac{1}{2^3} (1 - \rho_{12} + \rho_{23} - \rho_{31})$$
(2.15)

$$y_{\pm\pm\pm} = Y \Big(m_{x_1} \pm \sigma_{x_1}, m_{x_2} \pm \sigma_{x_2}, m_{x_3} \pm \sigma_{x_3} \Big)$$
(2.16)

Sendo:

 ρ_{ij} os valores dos coeficientes de correlação entre as duas variáveis aleatórias conhecidas X_i e X_j ;

 m_{x_i} e σ_{x_i} respectivamente a média e o desvio padrão da distribuição da variável aleatória conhecida X_i .

E o valor do desvio padrão da função é dado por:

$$\sigma_Y = \sqrt{E[Y^2] - (E[Y])^2}$$
(2.17)

Cabe ressaltar que o método de Rosenblueth requer distribuições de probabilidade simétricas, não necessitando, porém, que as mesmas sejam normais.

2.4 – MÉTODO DE MONTE CARLO

O Método de Monte Carlo é uma técnica estatística de amostragem que consiste na geração de n pontos para cada variável aleatória independente dentro de suas respectivas distribuições de probabilidade, supostamente conhecidas. Para cada rodada de variáveis

independentes encontradas, calcula-se a variável dependente de interesse. Com o uso de rotinas computacionais, pode-se gerar um número suficiente de dados, de modo que se obtenha a distribuição de probabilidades da variável de interesse com um erro dentro de limites aceitáveis.

Uma descrição do método de Monte Carlo pode ser encontrada em Ang e Tang (1984).

2.5 – MÉTODO DO SEGUNDO MOMENTO DE PRIMEIRA ORDEM

Conforme Harr (1987), o método do Segundo Momento de Primeira Ordem (em inglês, "First-Order, Second-Moment Method" ou "FOSM"), permite o cálculo dos parâmetros de uma distribuição de probabilidades a partir dos parâmetros das variáveis aleatórias independentes, supostamente conhecidos, a ela associados.

Seja $f(x_1, x_2, x_3, ..., x_n)$ uma função de n variáveis aleatórias não correlacionadas. Se os dois primeiros momentos probabilísticos das variáveis (média e variância) são conhecidos, os dois primeiros momentos probabilísticos de f podem ser estimados a partir da expansão da função f em série de Taylor, ao redor dos pontos correspondentes às médias das variáveis.

Truncando a série de Taylor após os termos de primeiro grau (uma aproximação de primeira ordem, portanto), o valor esperado e a variância de f podem ser estimados a partir do valor esperado e da variância das variáveis aleatórias, de acordo com as seguintes expressões:

$$E[f] \cong f(\bar{x}_1, \bar{x}_2, \bar{x}_3, \dots, \bar{x}_n)$$
(2.18)

$$V[f] \cong \sum_{i=1}^{n} \left[\left(\frac{\partial f}{\partial x_i} \right)^2 \cdot V[x_i] \right]$$
(2.19)

Onde $\bar{x}_n = E[x_n]$ é o valor esperado ou média e $V[x_n]$ é a variância da variável aleatória x_n . Todas as derivadas são avaliadas para os valores médios de todas as variáveis aleatórias contidas em suas expressões.

2.6 – TESTE DE KOLMOGOROV-SMIRNOV

O teste de Kolmogorov-Smirnov é um teste estatístico que verifica se uma amostra de dados se adequa a uma certa distribuição de probabilidades dentro de um nível de significância adotado.

Uma explanação mais detalhada do método pode ser obtida em Massey (1951).

O procedimento de cálculo para a realização do teste consiste em verificar a máxima distância vertical (" $D_{máx}$ ") entre a curva da distribuição acumulada teórica e a curva da distribuição acumulada observada. Esta máxima diferença encontrada é então comparada com um valor crítico de acordo com o nível de significância adotado para o teste.

Na Figura 2.10 a seguir mostra-se, graficamente, o teste de Kolmogorov-Smirnov:

Figura 2.10 - Teste de Kolmogorov-Smirnov

2.7 – CONFIABILIDADE EM FUNDAÇÕES

Confiabilidade, segundo Harr (1987), é a avaliação probabilística da possibilidade do desempenho adequado de um sistema, por um período específico de tempo, em condições operacionais pré-definidas.

A confiabilidade de um sistema pode ser medida pela relação entre a sua capacidade e a sua demanda. Porém, em Engenharia, todo projeto geralmente tem de lidar com certos graus de incerteza, associados tanto à capacidade (reações) quanto à demanda (ações). Se a capacidade e a demanda de um sistema forem tratadas como variáveis aleatórias, incorporando assim suas incertezas associadas, pode-se estimar, além dos tradicionais fatores de segurança, o chamado índice de confiabilidade, relacionado a uma probabilidade de falha (Ang e Tang, 1984, Harr, 1987).

Segundo Cintra e Aoki (2010), é impossível se obter uma obra com risco de ruína igual a zero. Cabe ao engenheiro mensurar e avaliar se o risco existente é aceitável ou não. A ideia de que uma obra em que foram adotados os coeficiente de segurança de norma, e que não possua erros de projeto e de execução terá risco zero é um conceito ultrapassado. Na engenharia atual deve-se sempre calcular a probabilidade de ruína máxima aceitável, além do uso dos tradicionais coeficientes de segurança.

Nas Figuras 2.11 e 2.12 a seguir mostram-se um exemplo simples do uso do conceito de confiabilidade. No dimensionamento de uma viga, usa-se, na engenharia clássica, um único valor para a carga F. Mesmo que este valor seja obtido a partir de diversos cenários de carga, geralmente adota-se um único valor para se efetuar o dimensionamento.

Por outro lado, quando se adotam conceitos de confiabilidade, essa carga é descrita como uma variável aleatória podendo assumir n valores, com uma probabilidade de ocorrência associada a cada um desses valores.

Figura 2.11 – Valor determinístico usado para o dimensionamento.

Figura 2.12 – Adoção de conceitos de Confiabilidade para a obtenção da grandeza em análise.

2.7.1 – Probabilidade de ruína

Segundo Cintra e Aoki (2010), a tradição de projetos de fundações no Brasil, é a de se adotar um coeficiente de segurança global. Calcula-se a resistência do solo através de uma sondagem média, e aplica-se um fator de segurança para encontrar a carga admissível , como mostrado na Figura 2.13 a seguir:

Figura 2.13 – Abordagem determinística das cargas resistentes e solicitantes (Fonte: Cintra e Aoki, 2010)

Gera-se com isso a falsa ideia de que nenhuma carga solicitante atingirá o valor da resistência calculada, mesmo com uma gama de cargas solicitantes, todas menores que o valor da carga admissível. Porém, ignora-se a dispersão das resistências em torno do seu valor

médio, fato este que pode acarretar em um valor de resistência menor que a carga solicitante, caracterizando a falha da estrutura, conforme mostrado na Figura 2.14 a seguir:

Figura 2.14 – Distribuições de probabilidade das cargas Resistentes e Solicitantes (Fonte: Cintra e Aoki, 2010)

Nota-se que os valores à direita do ponto C na curva das solicitações assumem valores maiores que os das resistências à esquerda deste mesmo ponto, situação esta que caracteriza a ruína da estrutura.

É nesta área do gráfico que o estudo de Confiabilidade está focado. Cabe ao calculista conhecer e tentar minimizar estes valores críticos nos projetos.

2.7.2 – Índice de confiabilidade

O parâmetro que traduz a probabilidade de falha da estrutura é chamado de Índice de Confiabilidade . Segundo Aoki (2002), apud Dziekaniak (2005), este parâmetro está associado à posição relativa entre as distribuições das resistências e das solicitações e às suas respectivas dispersões.

Voltando à Figura 2.14, pode-se notar que o índice de confiabilidade é proporcional à área abaixo da distribuição de resistências à esquerda do ponto C, e abaixo da distribuição das solicitações à direita do mesmo ponto.

A expressão que calcula o índice de confiabilidade é apresentada a seguir:

(2.20)

Onde:

 β = índice de confiabilidade da estrutura;

 R_m = média da distribuição das resistências;

 $S_m =$ média da distribuição das solicitações;

 σ_s^2 = variância da distribuição das solicitações; e

 σ_R^2 = variância da distribuição das resistências.

Segundo Aoki (2002), na área de engenharia de fundações são considerados aceitáveis valores de índice de confiabilidade superiores a 3,09, que conduzem a probabilidades de ruína inferiores a 1/1000 eventos.

3 – DISTRIBUIÇÃO DE PROBABILIDADES DAS CARGAS SOLICITANTES

3.1 – INTRODUÇÃO

Este capítulo apresentará os valores das máximas cargas axiais solicitantes em cada estaca, os quais foram obtidos a partir do memorial de cálculo da obra de ampliação do TECON.

3.2 – CARGAS AXIAIS SOLICITANTES POR ESTACA

O projeto estrutural do berço III do cais do TECON contemplou diversos cenários de carregamento (atracação, correntes, vento, sobrecargas verticais, etc.), cujas combinações ponderadas geraram as cargas axiais (N_z) máximas mostradas na Tabela 3.1

Estaca	Nz (KN)	Estaca	Nz (KN)	Estaca	Nz (KN)	
1	2296.3	21	2223.8	41	2246.2	
2	1779.1	22	2216.8	42	756.38	
3	1825	23	2223.8	43	2988.63	
4	1850	24	2377.2	44	1051.19	
5	1851	25	800.6	45	2823.92	
6	1847.4	26	3228.08	46	1202.4	
7	1844.5	27	1158.94	47	3133.46	
8	1847.5	28	3039.14	48	2533.9	
9	1850.3	29	1306.82	49	2087.9	
10	1846.3	30	3337.86	50	2169.5	
11	1823.7	31	3092.23	51	2200.3	
12	1795.8	32	1284.55	52	2202.8	
13	2415.5	33	2857.62	53	2210.1	
14	3293.64	34	1029.44	54	2212.5	
15	1399.07	35	2989.35	55	2210.3	
16	3071.82	36	725.46	56	2202.8	
17	1138.9	37	2243.2	57	2199.5	
18	3220.45	38	2155.1	58	2169	
19	769.78	39	2143.6	59	2091.5	
20	2383.5	40	2155.4	60	2584.6	

TABELA 3.1 Cargas axiais solicitantes máximas por estaca.

A Tabela 3.1 acima mostra os valores das cargas axiais máximas solicitantes das estacas de um módulo do cais. Para os outros 4 módulos, os valores se repetem, já que a distribuição de estacas é idêntica nos cinco módulos.

Os valores da Tabela 3.1 são representados na Figura 3.1 a seguir em forma de histograma, juntamente com a curva da distribuição normal correspondente:

Figura 3.1 – Histograma da distribuição das cargas solicitantes por módulo

A média, o desvio padrão e o coeficiente de variação da distribuição das cargas solicitantes por módulo têm os seguintes valores:

$$\mu_{S_{módulo}} = 2100,3 \ KN$$

 $\sigma_{S_{módulo}} = 683,1 \ KN$
 $CV_{S_{módulo}} = 32,5\%$

Aqui cabe ressaltar que, na análise global, considerando todas as 300 estacas do cais, o desvio padrão sofre uma leve alteração, passando do valor 683,1 *KN* para 678,6 *KN*, fato este que praticamente não altera a distribuição das cargas solicitantes, a qual é mostrada na Figura 3.2 a seguir, juntamente com o histograma da distribuição das cargas solicitantes:

Figura 3.2 – Histograma da distribuição das cargas solicitantes considerando todas as estacas da obra

A média, o desvio padrão e o coeficiente de variação da distribuição das cargas solicitantes, considerando todas as estacas da obra, têm os seguintes valores:

$$\mu_{S_{global}} = 2100,3 \text{ KN}$$

$$\sigma_{S_{global}} = 678,6 \text{ KN}$$

$$CV_{S_{global}} = 32,3\%$$

Os resultados descritos são baseados nos valores máximos de carga sobre cada estaca. Portanto, a distribuição estatística dos carregamentos sobre as estacas reflete apenas a variabilidade espacial das cargas, não incluindo a variabilidade originada pelos diversos cenários de carregamento previstos para a obra.

4 – ESTIMATIVA "À PRIORI"

4.1 – INTRODUÇÃO

Este capítulo apresentará o método de cálculo, assim como as premissas e considerações adotadas para a obtenção das distribuições da capacidade de carga das estacas "à priori".

4.2 – ESTUDO DO SUBSOLO

Na obra de ampliação do TECON foram realizados ensaios de campo do tipo *SPT*, cujos valores de N_{SPT} são apresentados na Tabela 4.1. Os valores fracionados correspondem a trechos em que o número de golpes apresentado no boletim de sondagem ultrapassou ou não atingiu os 30 centímetros finais do amostrador. Foi então interpolado ou extrapolado linearmente o número de golpes para os 30 centímetros finais do amostrador. Cabe ressaltar que os valores de N_{SPT} foram limitados a um máximo de 50 golpes, conforme exigência dos métodos semi-empíricos apresentados no item 2.1.1.

Foram realizados 5 furos de sondagem, os quais chegaram à elevação -45 metros, considerando o nível da água como elevação zero. Cada furo de sondagem abrange uma área de influência correspondente a um módulo do cais, visto que o cais também foi subdividido em 5 trechos de 50 metros cada, conforme mostrado na Figura 4.1.

Elevação	SP.01 (nº de	SP.02 (nº de	SP.03 (nº de	SP.04 (nº de	SP.05 (nº de	
(m)	golpes)	golpes)	golpes) golpes)		golpes)	
0 a -10	0.00	0.00	0.00	0.00	0.00	
-11	0.00	0.00	0.00	0.00	0.00	
-12	0.00	0.00	0.00	0.00	0.00	
-13	0.00	19.66	0.00	0.00	0.00	
-14	0.00	45.00	0.00	0.00	0.00	
-15	0.00	5.00	0.00	0.00	0.00	
-16	2.14	2.73	0.00	0.00	0.00	
-17	10.00	16.96	0.00	0.00	0.00	
-18	18.00	6.00	17.00	17.00	0.00	
-19	19.00	17.00	22.76	22.76	4.00	
-20	12.00	37.00	3.43	3.43	21.00	
-21	3.46	4.80	2.81	2.81	3.43	
-22	3.87	3.75	5.36	5.36	2.40	
-23	2.81	5.36	4.00	4.00	2.81	
-24	3.60	7.50	4.00	4.00	4.00	
-25	3.33	4.80	4.55	4.55	2.00	
-26	4.62	4.80	3.00	3.00	4.44	
-27	3.46	4.14	3.60	3.60	3.75	
-28	3.91	3.46	4.29	4.29	2.14	
-29	4.29	3.46	5.00	5.00	4.69	
-30	4.84	3.87	5.36	5.36	3.33	
-31	5.17	4.62	4.84	4.84	5.00	
-32	4.84	4.00	5.36	5.36	5.17	
-33	4.62	5.00	6.43	6.43	5.63	
-34	5.45	6.21	6.00	6.00	4.55	
-35	5.00	5.00	6.00	6.00	3.46	
-36	5.63	5.00	6.92	6.92	5.36	
-37	6.00	5.63	6.33	6.33	6.92	
-38	6.56	5.63	7.50	7.50	6.00	
-39	6.67	6.21	6.56	6.56	6.00	
-40	6.43	7.24	5.81	5.81	6.00	
-41	6.67	6.43	7.24	7.24	7.50	
-42	7.78	8.28	7.50	7.50	8.00	
-43	8.57	7.50	8.08	8.08	7.24	
-44	8.00	6.67	6.43	6.43	6.43	
-45	23.00	16.00	17.00	17.00	13.45	
-46	50.00	50.00	13.00	13.00	29.00	
-47	50.00	50.00	50.00	50.00	50.00	
-48	50.00	50.00	50.00	50.00	50.00	
-49	50.00	50.00	50.00	50.00	50.00	
-50	50.00	50.00	50.00	50.00	50.00	

TABELA 4.1 Valores do N_{SPT} para cada furo de sondagem.

Figura 4.1 – Zonas de influência dos furos de sondagem.

4.3 – PERFIL ESTRATIGRÁFICO DO SOLO

Com as informações obtidas nos boletins de sondagem apresentados no Anexo A, foi possível desenhar o perfil das camadas do solo encontradas durante a sondagem, as quais são representadas na Figura 4.2 a seguir:

Figura 4.2 – Perfil estratigráfico do solo (Fonte: Fagundes, 2007).

Nota-se uma grande camada de argila siltosa que se inicia próximo à elevação -25 metros e se estende até aproximadamente a elevação -45 metros, onde passam a predominar camadas arenosas mais resistentes.

4.4 – PROCEDIMENTO DE CÁLCULO

O cálculo da previsão de capacidade de carga do solo "à priori" foi realizado pelos métodos de Aoki & Velloso e Décourt & Quaresma, cujas metodologias são apresentadas no item 2.1.1.

A análise foi realizada através de planilhas eletrônicas nas quais foi implementado o cálculo da capacidade resistente do solo a cada metro de profundidade, pelos dois métodos descritos. Os parâmetros estatísticos - média e variância - das distribuições "à priori" foram calculados pelo método FOSM (First-Order, Second-Moment Method), descrito no item 2.5.

4.5 – APLICAÇÃO DO MÉTODO FOSM PARA A DETERMINAÇÃO DOS PARÂMETROS DAS DISTRIBUIÇÕES "À PRIORI"

Esta seção apresentará a aplicação do método FOSM nos métodos de cálculo de estacas visando o conhecimento dos parâmetros estatísticos (média e variância) das distribuições "à priori" de capacidade de carga das estacas, uma vez estimada ou calculada a dispersão dos valores de N_{SPT} .

4.5.1 – Aplicação do método FOSM ao método de Aoki & Velloso

Conforme apresentado no item 2.1.1, o método de Aoki & Velloso calcula a capacidade de carga do solo através da soma de duas parcelas de resistência do solo, a parcela de ponta e a lateral.

Na Figura 4.3 a seguir, é mostrada uma estaca subdivida em n segmentos, tão pequenos quanto se queira, e não necessariamente idênticos:

Figura 4.3 – Discretização das forças resistivas atuantes em uma estaca.

A parcela de resistência oferecida pela ponta da estaca será aquela gerada na base do segmento n ($Q_{b,n}$). A parcela de resistência oferecida por atrito lateral será igual ao somatório das contribuições individuais de cada segmento ($\Delta Q_{s,i}$), desde o segmento 1 até o segmento n. Portanto, a capacidade de carga da estaca, subdividida em n segmentos será:

$$Q_{u,n} = Q_{b,n} + Q_{s,n} (4.1)$$

Onde:

n é um número inteiro que define a profundidade de assentamento da ponta da estaca em relação à superfície do terreno,

 $Q_{b,n} = \frac{A_{b,k}}{F_1} \cdot N_{b,n} \text{ é a parcela de resistência de ponta da estaca, e}$ $Q_{s,n} = \sum_{i=1}^{n} \Delta Q_{s,i} = \sum_{i=1}^{n} \frac{U \cdot \Delta L_i \cdot \alpha \cdot k}{F_2} \cdot N_i \text{ é a parcela de resistência devido ao atrito lateral}$

da estaca.

Sendo $N_{b,n} = \frac{N_{n-1}+N_n+N_{n+1}}{3}$ a média aritmética entre o valor do N_{SPT} medido na profundidade anterior à posição da ponta da estaca, na profundidade da ponta e na profundidade posterior à posição da ponta da estaca.

Admitindo-se que as variáveis aleatórias são os valores de N_{SPT} , e aplicando-se o método FOSM, podem-se obter as expressões para a média e a variância da resistência de ponta $Q_{b,n}$:

$$E[Q_{b,n}] = \bar{Q}_{b,n} = \frac{A_b \cdot k}{F1} \cdot \bar{N}_{b,n}$$

$$\tag{4.2}$$

$$V[Q_{b,n}] = \left(\frac{A_b \cdot k}{F1}\right)^2 \cdot V[N_{b,n}]$$
(4.3)

Se N_{n-1} , N_n e N_{n+1} forem variáveis aleatórias estatisticamente independentes, pode-se escrever também:

$$E[N_{b,n}] = \overline{N}_{b,n} = \frac{\overline{N}_{n-1} + \overline{N}_n + \overline{N}_{n+1}}{3}$$
(4.4)

$$V[N_{b,n}] = \left(\frac{1}{3}\right)^2 \left(V[N_{n-1}] + V[N_n] + V[N_{n+1}]\right)$$
(4.5)

Para o cálculo da média e da variância da resistência lateral pela aplicação do método FOSM ao método de Aoki & Velloso, novamente admitindo-se que as variáveis aleatórias são os valores de N_{SPT} , podemos escrever:

$$E[\Delta Q_{s,i}] = \overline{\Delta Q}_{s,i} = \frac{U.\Delta L_i.\,\alpha.\,k}{F2}.\,\overline{N}_i \tag{4.6}$$

$$V[\Delta Q_{s,i}] = \left(\frac{U.\,\Delta L_i.\,\alpha.\,k}{F2}\right)^2.\,V[N_i] \tag{4.7}$$

Sendo \overline{N}_i e $V[N_i]$, respectivamente o valor médio e a variância de todos os valores de N_{SPT} da camada *i*.

4.5.2 - Aplicação do método FOSM ao método de Décourt & Quaresma

O cálculo da capacidade de carga através do método de Décourt & Quaresma, também divide a resistência do solo em duas parcelas, a lateral e a de ponta, como mostrado no item 2.1.1.

Discretizando a estaca em n segmentos, conforme apresentado na Figura 4.3, é possível escrever a resistência do solo conforme a equação 4.8 a seguir, que é a mesma expressão do método anterior:

$$Q_{u,n} = Q_{b,n} + Q_{s,n} (4.8)$$

Porém, no método de Décourt & Quaresma, as equações referentes às parcelas lateral e de ponta da resistência da estaca recebem as seguintes expressões:

 $Q_{b,n} = A_b. C_1. C_2. N_{b,n}$ é a parcela de resistência de ponta da estaca, e

 $Q_{s,n} = 10. C_3. U. L_n. \left(\frac{N_{s,n}}{3} + 1\right)$ é a parcela de resistência devido ao atrito lateral da

estaca.

O parâmetro $N_{b,n}$ é o mesmo que foi descrito anteriormente, no item 4.5.1.

O parâmetro $N_{s,n}$ é o valor médio de N_{SPT} ao longo do comprimento da estaca, excluídos os valores de N_{SPT} utilizados no cálculo de $N_{b,n}$.

Assim:
$$N_{s,n} = \frac{\sum_{j=1}^{n-2} (N_j)}{n-2}$$
, para $n > 2$.

Aplicando-se o método FOSM ao método de Décourt & Quaresma e admitindo-se o valor de N_{SPT} como variável aleatória, temos as seguintes expressões para a média e variância da resistência de ponta $Q_{b,n}$:

$$E[Q_{b,n}] = \bar{Q}_{b,n} = A_b. C_1. C_2. \bar{N}_{b,n}$$
(4.9)

$$V[Q_{b,n}] = (A_b, C_1, C_2)^2, V[N_{b,n}]$$
(4.10)

Quanto à resistência lateral, o método de Décourt & Quaresma calcula a resistência lateral total da estaca. Porém, um procedimento de cálculo muito frequente consiste em

subdividir a estaca em *n* segmentos de igual comprimento ΔL (em geral igual a 1,0 metro, que é a distância entre as medidas de N_{SPT}). Assim:

$$L_n = n.\Delta L \tag{4.11}$$

Portanto:

$$Q_{s,n} = 10. C_3. U. n. \Delta L. \left[\frac{\sum_{j=1}^{n-2} (N_j)}{3. (n-2)} + 1 \right]$$
(4.12)

Ou:

$$Q_{s,n} = \frac{10.C_3.U.n.\Delta L}{3.(n-2)} \left[\sum_{j=1}^{n-2} (N_j) + 3.(n-2) \right]$$
(4.13)

Utilizando-se as regras dos somatórios, pode-se escrever:

$$3.(n-2) = \sum_{j=1}^{n-2} (3)$$
(4.14)

Substituindo-se na expressão anterior, obtém-se:

$$Q_{s,n} = \frac{10.C_3.U.n.\Delta L}{3.(n-2)} \cdot \left[\sum_{j=1}^{n-2} (N_j) + \sum_{j=1}^{n-2} (3)\right]$$
(4.15)

Ou ainda:

$$Q_{s,n} = \frac{10.C_3.U.n.\Delta L}{3.(n-2)} \cdot \sum_{j=1}^{n-2} (N_j + 3)$$
(4.16)

A Equação 4.16 representa a capacidade de carga total por atrito lateral de uma estaca na profundidade n. É possível obter a capacidade de carga por atrito lateral caso a estaca tivesse um segmento a menos, ou seja, se ela tivesse sua ponta localizada na profundidade n-1:

$$Q_{s,n-1} = \frac{10.C_3.U.(n-1).\Delta L}{3.(n-3)} \cdot \sum_{j=1}^{n-3} (N_j + 3)$$
(4.17)

Assim, o acréscimo de capacidade de carga, por atrito lateral, ocorrido entre as profundidades n - 1 e n pode ser calculado:

$$\Delta Q_{s,n} = Q_{s,n} - Q_{s,n-1} \tag{4.18}$$

E portanto:

$$\Delta Q_{s,n} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{n}{(n-2)} \cdot \sum_{j=1}^{n-2} (N_j + 3) - \frac{(n-1)}{(n-3)} \cdot \sum_{j=1}^{n-3} (N_j + 3) \right]$$
(4.19)

Desenvolvendo a expressão, vem:

$$\Delta Q_{s,n} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{n}{(n-2)} \cdot \left((N_{n-2}+3) + \sum_{j=1}^{n-3} (N_j+3) \right) - \frac{(n-1)}{(n-3)} \cdot \sum_{j=1}^{n-3} (N_j+3) \right]$$
(4.20)

$$\Delta Q_{s,n} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{n}{(n-2)} \cdot (N_{n-2}+3) + \left(\frac{n}{(n-2)} - \frac{(n-1)}{(n-3)} \right) \cdot \sum_{j=1}^{n-3} (N_j+3) \right]$$
(4.21)

$$\Delta Q_{s,n} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{n}{(n-2)} \cdot (N_{n-2}+3) - \frac{2}{(n-2).(n-3)} \cdot \sum_{j=1}^{n-3} (N_j+3) \right]$$
(4.22)

A equação acima pode ser generalizada para qualquer segmento *i* da estaca, da seguinte forma:

$$\Delta Q_{s,i} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{i}{(i-2)} \cdot (N_{i-2}+3) - \frac{2}{(i-2).(i-3)} \cdot \sum_{j=1}^{i-3} (N_j+3) \right]$$
(4.23)

Os resultados expressos pela equação acima demonstram que o cálculo de capacidade por atrito lateral, através do método de Décourt & Quaresma, pode ser realizado de forma cumulativa, aos moldes do procedimento adotado por Aoki & Velloso.

Admitindo-se que as variáveis aleatórias são os valores de N_{SPT} , e aplicando-se o método FOSM, podem-se obter as expressões para a média e a variância de $\Delta Q_{s,i}$:

$$E[\Delta Q_{s,i}] = \overline{\Delta Q}_{s,i} = \frac{10.C_3.U.\Delta L}{3} \cdot \left[\frac{i}{(i-2)} \cdot (\overline{N}_{i-2} + 3) - \frac{2}{(i-2).(i-3)} \cdot \sum_{j=1}^{i-3} (\overline{N}_j + 3)\right]$$
(4.24)

$$V[\Delta Q_{s,i}] = \left(\frac{10.C_3.U.\Delta L}{3}\frac{i}{(i-2)}\right)^2.V[N_{i-2}] + \sum_{j=1}^{i-3} \left[\left(\frac{10.C_3.U.\Delta L}{3}.\frac{2}{(i-2).(i-3)}\right)^2 V[N_j] \right]$$
(4.25)

O segundo termo da equação acima, formado por um somatório, tende a zero à medida que o valor de *i* aumenta, ou seja, à medida que se tomam trechos mais profundos da estaca para o cálculo de $\Delta Q_{s,i}$. Se este termo for desprezado:

$$V[\Delta Q_{s,i}] \cong \left(\frac{10.C_3.U.\Delta L}{3} \frac{i}{(i-2)}\right)^2 . V[N_{i-2}]$$
(4.26)

4.6 – COMENTÁRIO SOBRE A VARIABILIDADE ORIUNDA DO ENSAIO TIPO SPT

O ensaio tipo SPT, apesar de sua simplicidade e facilidade de execução, pode estar associado a variabilidades de diversos tipos, principalmente relacionadas à manutenção dos equipamentos e ao correto atendimento aos procedimentos normatizados de ensaio.

Segundo Hachich (1998), o ensaio de campo tipo SPT possui uma certa eficiência, que é a razão entre a energia efetivamente transmitida ao amostrador e a energia potencial teórica do ensaio. Esta eficiência varia conforme o rigor e padronização do ensaio. No Brasil, a eficiência do ensaio tipo SPT é de, em média 70%.

Este, porém, é apenas um dos fatores que podem conduzir a variabilidades no resultado do N_{SPT} . Quando se diz que, em média, a eficiência do ensaio no Brasil é 70%, está implícita nesta afirmação uma dispersão em torno deste valor médio, o que afeta diretamente o valor de N_{SPT} medido.

Outras variabilidades podem existir no valor do N_{SPT} , como por exemplo, o fator humano, referente ao operador, o estado de manutenção do equipamento e o rigor ao atendimento das normas de execução do ensaio.

Como existe variabilidade no ensaio, existirá, consequentemente, variabilidade nos valores da capacidade de carga das estacas, calculados através do N_{SPT} . Esta parcela extra de incerteza oriunda da natureza do ensaio tipo SPT, será incorporada à análise, adotando-se um coeficiente de variação (razão entre o desvio padrão e a média) de 50% para o N_{SPT} .

4.7 – CONDIÇÃO DE EMBUCHAMENTO DAS ESTACAS

Como a solução técnica adotada para a obra consistiu em estacas de ponta aberta, cabe aqui uma consideração sobre o comportamento do solo no interior das mesmas por ocasião da cravação.

Duas condições podem ocorrer em estacas deste tipo. Na primeira, durante a cravação, uma coluna de solo permanece solidarizada junto à ponta da estaca, formando assim uma bucha (em inglês "plug"), mobilizando, desta forma, resistência de ponta na estaca, como se esta tivesse ponta fechada. A segunda condição ocorre quando, à medida em que a estaca penetra no solo, este preenche a área vazada da estaca, gerando algum atrito interno, e nenhum acréscimo de resistência de ponta.

Nas Figura 4.4 e 4.5 a seguir, são mostradas as situações de estaca embuchada e não embuchada, respectivamente.

Para avaliar a condição de embuchamento ou não embuchamento, algumas estacas passaram por medições durante a obra, com o auxílio de um cabo graduado preso a uma massa.

Figura 4.4 – Configuração de resistências do solo na hipótese de embuchamento da estaca.

Figura 4.5 – Configuração de resistências do solo na hipótese de não embuchamento da estaca.

Nos dados da Figura 4.6 a seguir, retirados de Fagundes (2007), são mostrados os comprimentos das colunas de solo medidas no interior de algumas estacas da obra. Foi observado que o solo penetrava, em média, 26 metros no interior das estacas, a partir de sua ponta, fato este que justificou o cálculo das capacidades de carga considerando as estacas como não embuchadas.

Figura 4.6 - Verificação da penetração de solo dentro das estacas (Fonte: Fagundes,

Na hipótese do não embuchamento da estaca, considerou-se que o solo que ia penetrando no seu interior não sofria modificações em suas propriedades em função do seu movimento dentro do fuste. Decidiu-se por este procedimento porque seria muito difícil a obtenção dos parâmetros para avaliar uma eventual mudança de propriedades. Convém ressaltar que esta suposição nem sempre vai a favor da segurança, visto que este solo apresenta uma camada de argila que ao ser adensada gera excesso de poro-pressões. Outra consideração admitida foi que o solo existente no início da camada interna do fuste é o mesmo encontrado no início do perfil, ou seja, a partir do instante que a estaca foi penetrando no terreno, ela foi levando consigo as diferentes camadas de solo atravessadas.

4.8 – RESULTADOS OBTIDOS

As planilhas de cálculo são apresentadas no Anexo B, e trazem o cálculo da capacidade resistente do solo metro a metro, pelos dois métodos de cálculo adotados e para cada um dos cinco furos de sondagem. Também são apresentados, nas mesmas planilhas, os valores do desvio padrão referente a cada metro de profundidade do solo, nos dois métodos de cálculo apresentados.

Os resultados gráficos da previsão da capacidade de carga das estacas são mostrados nas Figuras 4.7 a 4.11, onde são destacadas as parcelas individuais de resistência lateral e de ponta das estacas.

Figura 4.7 – Previsão da capacidade de carga "à priori", furo de sondagem SP.01

Figura 4.8 – Previsão da capacidade de carga "à priori", furo de sondagem SP.02

Figura 4.9 – Previsão da capacidade de carga "à priori", furo de sondagem SP.03

Figura 4.10 – Previsão da capacidade de carga "à priori", furo de sondagem SP.04

Figura 4.11 – Previsão da capacidade de carga "à priori", furo de sondagem SP.05

As profundidades de assentamento previstas correspondem a uma capacidade de carga igual ou maior do que o dobro do valor da carga de trabalho das estacas, ou seja, 2 x 3300KN = 6600KN.

Os valores médios das capacidades de carga das estacas, assim como seus desvios padrão e coeficientes de variação referentes às distribuições dos 5 módulos, são apresentados na Tabela 4.2 a seguir:

	SP.01		SP.02		SP.03		SP.04		SP.05	
Método	A&V	D&Q								
Elevação (m)	-44,95	-44,95	-44,65	-43,65	-46,78	-45,78	-46,92	-45,92	-46,87	-45,87
Média (KN)	6566.3	8226.6	7310.1	7210.6	7344.4	7901.4	7287.8	8101.2	6717.4	7186.0
Desv. Padrão (KN)	1057.3	1536.9	1087.2	1223.9	1216.4	1494.8	1223.1	1579.8	1211.3	1485.8
Coef. Variação	16,1%	18,7%	14,9%	17,0%	16,6%	18,9%	16,8%	19,5%	18,0%	20,7%

TABELA 4.2 Parâmetros das distribuições "à priori" por furo de sondagem.

Onde "A & V" representa o método de Aoki & Velloso, e "D & Q" o de Décourt & Quaresma.
Com os parâmetros das distribuições "à priori" de cada furo de sondagem, foram estimados os parâmetros da distribuição da capacidade de carga das estacas para toda a extensão da obra, os quais resultaram nos valores apresentados na Tabela 4.3:

TABELA 4.3 Parâmetros da distribuição "à priori" considerando toda a extensão da obra.

Método	Aoki & Velloso	Décourt & Quaresma
Média (KN)	7045.2	7725.2
Desvio Padrão (KN)	1159.1	1464.2
Coeficiente de Variação	16,5%	19,0%

5 – FUNÇÃO DE VEROSSIMILHANÇA

5.1 – INTRODUÇÃO

No presente estudo, a função de verossimilhança que compõe a análise Bayesiana foi obtida por meio da fórmula dinâmica dos Dinamarqueses (equação 5.1). Conforme Danzinger e Ferreira, (2000), esta fórmula tem demonstrado boa concordância com resultados de análises mais refinadas baseadas na teoria de propagação de ondas em estacas metálicas.

Para a estimativa da capacidade de carga das estacas a partir da fórmula dinâmica dos Dinamarqueses, foram consideradas, além da variabilidade espacial das estacas através dos valores medidos das suas negas (*s*), também as variabilidades da eficiência do martelo (e_1) e de um Fator de Correção (*FC*), que será determinado pela razão entre o fator tempo (*FT*) e o fator dinâmico (*FD*), os quais serão definidos oportunamente.

A fórmula dinâmica dos Dinamarqueses passa então a ser interpretada como uma função de três variáveis aleatórias, da seguinte forma:

$$Q_{u(s,e_{1},FC)} = \frac{e_{1}.W.h}{s + \frac{1}{2}\sqrt{2.e_{1}.W.h.\frac{L}{E.A}}} \quad FC$$
(5.1)

Sendo FC o Fator de Correção, que será definido a seguir.

5.2 – DEFINIÇÃO DO FATOR DE CORREÇÃO FC

Sabendo-se que a resistência do solo mobilizada durante a cravação é uma resistência dinâmica e de curto prazo, surge a necessidade de corrigir a influência desses fenômenos para se obter uma resistência estática, a longo prazo, comparável à previsão "à priori" via métodos semi-empíricos.

Para tanto, definiu-se no presente estudo, um Fator de Correção (FC), que representará uma relação entre o fator de modificação de resistência com o tempo (FT), e o fator de amplificação dinâmica (FD).

Dessa forma, o Fator de Correção (FC), é representado por:

$$FC = \frac{FT}{FD}$$
(5.2)

Onde:

FT = Fator de modificação de resistência com o tempo, que é a razão entre a resistência do solo a longo prazo e a resistência no momento da cravação;

FD = Fator de amplificação dinâmica, que é a razão entre a resistência do solo mobilizada por esforço dinâmico a resistência do solo mobilizada por esforço quasi-estático.

5.3 - COMENTÁRIO SOBRE O PESO DO MARTELO DE CRAVAÇÃO (W)

Conforme abordado no item 1.4.2, parte das estacas componentes do cais são inclinadas na proporção de 1 (H) : 4 (V), o que corresponde a um ângulo de 14,04°. Esta inclinação indica a necessidade de decomposição da força peso do martelo, por ocasião do cálculo da capacidade resistente do solo através da fórmula dinâmica dos Dinamarqueses.

Na Figura 5.1 a seguir, são mostradas esquematicamente as forças envolvidas na cravação, devidas ao peso do martelo:

(1)

Figura 5.1 – Decomposição da força inclinada do peso do martelo de cravação. Efetuando-se a decomposição das forças, temos:

$$W_{inclinado} = W \times \cos 14,04^{\circ}$$
(5.3)

$$W_{inclinado} = 0.97 \times W \tag{5.4}$$

Como a parcela inclinada da carga peso resultou na ordem de 97% do peso total, esta diferença será desprezada, e para efeito de cálculo, todas as estacas receberão o mesmo valor da força peso do martelo (W).

5.4 – TRATAMENTO ESTATÍSTICO DAS NEGAS (s), EFICIÊNCIA DO MARTELO (e_1) E FATOR DE CORREÇÃO (FC)

Conforme descrito anteriormente, serão consideradas, além da variabilidade espacial das estacas através dos valores medidos das suas negas, também as variabilidades da eficiência do martelo de cravação e do Fator de Correção.

5.4.1 – Distribuição das negas (s):

A amostra das negas das 300 estacas serviu como base para a obtenção dos seus parâmetros estatísticos. No Anexo C encontram-se os valores medidos das negas, assim como as elevações da cabeça e do pé das estacas, além do nível d'água, elevação do lodo, do terreno e de arrasamento das 300 estacas que compõem o cais.

Dos valores medidos das negas, calculou-se a média (μ_s), o desvio padrão (σ_s) e o coeficiente de variação (CV_s), por módulo de 60 estacas, assim como para a amostra total das 300 estacas, os quais são apresentados na Tabela 5.1 a seguir:

	μ_{s} (m)	σ_{s} (m)	<i>CV</i> _s (%)
Módulo 1	0,002192	0,0009309	42,5
Módulo 2	0,002573	0,0005638	21,9
Módulo 3	0,002583	0,0003701	14,3
Módulo 4	0,002617	0,0002817	10,8
Módulo 5	0,002675	0,0002886	10,8
Amostra total	0,002528	0,0005679	22,5

TABELA 5.1 Parâmetros das distribuições da negas por módulo e da amostra total.

Nas Figuras 5.2 a 5.7 apresentam-se os valores das negas, representados em forma de histograma, primeiramente por módulo, e depois para a amostra total:

Figura 5.2 – Histograma dos valores medidos das negas no módulo 1

Figura 5.3 – Histograma dos valores medidos das negas no módulo 2

Figura 5.4 – Histograma dos valores medidos das negas no módulo 3

Figura 5.5 – Histograma dos valores medidos das negas no módulo 4

Figura 5.6 – Histograma dos valores medidos das negas do módulo 5

Figura 5.7 – Histograma dos valores medidos das negas da amostra total das estacas

Para a determinação de qual distribuição de probabilidades representa mais fielmente as amostras das negas, foram testadas as distribuições normal, log-normal e beta pelo teste de Komogorov-Smirnov, as quais conduziram aos seguintes valores de " $D_{máx}$ ", apresentados na Tabela 5.2 a seguir.

Segundo o teste de Kolmogorov-Smirnov, a máxima diferença entre a curva de probabilidade acumulada teórica e a observada deve ser inferior a 0,18 ($\alpha = 5\%$) ou 0,21 ($\alpha = 1\%$) para os módulos de 60 estacas, e inferior a 0,08 ($\alpha = 5\%$) ou 0,09 ($\alpha = 1\%$) para a amostra total das 300 estacas, para que as distribuições teóricas testadas sejam validadas. A Tabela 5.2 mostra que, com exceção da distribuição beta no módulo 2 a um nível de significância do teste (α) de 1%, nenhuma das três distribuições atendem ao critério do teste.

Na Figura 5.8 a seguir mostra-se, de forma gráfica, o teste da distribuição normal para as negas medidas no módulo 1. A máxima distância encontrada entre os patamares da curva observada e a curva teórica indica o valor de " $D_{máx}$ " apresentado na Tabela 5.2.

		Máxima diferença	Valor limite ao	Valor limite ao	
Módulo	Distribuição	entre a curva	nível de	nível de	
Wiodulo	Distribulção	teórica e a	significância	significância	
		observada ($D_{máx}$)	$\alpha = 5\%$	$\alpha = 1\%$	
	Normal	0,25			
1	Log-Normal	0,29			
	Beta	0,23			
	Normal	0,22			
2	Log-Normal	0,28			
	Beta	0,20			
	Normal	0,33			
3	Log-Normal	0,37	0,18	0,21	
	Beta	0,34			
	Normal	0,36			
4	Log-Normal	0,34			
	Beta	0,36			
	Normal	0,33			
5	Log-Normal	0,31			
	Beta	0,38			
	Normal	0,32			
Amostra total	Log-Normal	0,38	0,08	0,09	
	Beta	0,31			

TABELA 5.2	Valores de D_{max}	calculados p	pelo teste de	Kolmogorov-Smirno	v.
	III.d.				

Figura 5.8 – Teste de Kolmogorov-Smirnov – módulo 1 – distribuição Normal

O Anexo D apresenta os testes das demais distribuições de probabilidade, para os cinco módulos, assim como para a amostra total das 300 estacas.

Apesar de nenhuma das três distribuições testadas ter sido validada pelo teste de Kolmogorov-Smirnov, as distribuições normal e Beta apresentaram as menores diferenças entre a curva de probabilidade acumulada teórica e a observada. Assim, na simulação numérica de Monte Carlo, a ser apresentada adiante, serão efetuados dois cálculos, um considerando as negas com distribuição Normal e outro com distribuição Beta, pois foram as duas distribuições que melhor se adequaram aos dados de campo. Na simulação pelo método de Rosenblueth, assume-se uma simplificação a respeito da simetria das distribuições, pois esta é uma condição imposta pelo método.

Ressalte-se que os resultados descritos são baseados nos valores de nega medidos em cada estaca. Portanto, a distribuição estatística das negas reflete apenas a variabilidade espacial (ou heterogeneidade) do terreno, não incluindo a variabilidade intrínseca (ou incerteza) do próprio método de medição da nega.

5.4.2 – Distribuição da eficiência do martelo de cravação (e_1) :

Através de ensaios de carregamento dinâmico realizados em 22 estacas da obra, foram obtidos os parâmetros da distribuição de probabilidade da eficiência do martelo de cravação (e_1) .

Na Tabela 5.3 a seguir mostram-se os dados referentes aos ensaios. Dos dados da Tabela 5.3 obtêm-se os seguintes parâmetros da distribuição de e_1 :

$$\mu_{e_1} = 69\%$$

$$\sigma_{e_1} = 17\%$$

$$CV_{e_1} = \frac{\sigma_{e_1}}{\mu_{e_1}} = 25\%$$

Cabe ressaltar que estes parâmetros serão utilizados tanto nas análises individuais dos módulos, como na análise considerando a amostra total das 300 estacas.

Estaca	Data ensaio	Tempo após cravação (dias)	Martelo	Tipo de análise	Qmob. (KN)	% ponta	J lateral (s/m)	Eficiência (%)
243	23/10/2007	6	IHC-SC200	CASE	6500	-	0.70	78
244	23/10/2007	6	IHC-SC200	CASE	6250	-	0.70	70
245	23/10/2007	6	IHC-SC200	CAPWAP	6200	42	1.25	76
246	23/10/2007	2	IHC-SC200	CAPWAP	6300	21	0.737	77
247	23/10/2007	2	IHC-SC200	CAPWAP	7180	24	0.748	77
250	23/10/2007	1	IHC-SC200	CASE	6280	-	0.70	83
248	31/11/2007	9	IHC-SC200	CASE	6800	-	0.70	77
251	31/11/2007	5	IHC-SC200	CASE	6436	-	0.70	73
252	31/11/2007	4	IHC-SC200	CASE	6463	-	0.70	76
253	31/11/2007	4	IHC-SC200	CASE	6530	-	0.70	86
260	31/11/2007	16	IHC-SC200	CASE	6329	-	0.70	71
261	31/11/2007	15	IHC-SC200	CAPWAP	7380	35	1.22	73
47	20/6/2007	77	IHC-SC200	CAPWAP	5900	17	0.57	88
55	3/4/2007	13	IHC-SC200	CAPWAP	6000	14	0.50	38
50	3/4/2007	12	IHC-SC200	CAPWAP	6200	10	0.53	57
47	4/4/2007	0	IHC-SC200	CAPWAP	5200	63	0.95	30
103	10/5/2007	1	IHC-SC200	CAPWAP	5251	46	0.94	46
100	9/5/2007	11	IHC-SC200	CAPWAP	6000	17	0.83	50
120	10/5/2007	13	IHC-SC200	CAPWAP	6000	27	1.02	47
262	30/11/2007	14	IHC-SC200	CAPWAP	6900	22	0.52	69
263	30/11/2007	14	IHC-SC200	CAPWAP	7242	17	0.66	84
264	30/11/2007	10	IHC-SC200	CAPWAP	4401	37	0.90	94

TABELA 5.3 Dados referentes aos ensaios de carregamento dinâmico em 22 estacas da obra.

5.4.3 – Distribuição do Fator de Correção (FC):

Conforme explanado no item 5.2, o Fator de Correção adotado neste trabalho é a relação entre o fator de modificação da resistência com o tempo FT (que traduz o ganho ou perda de resistência do solo com o passar do tempo) e o fator de amplificação dinâmica FD (que traduz a diferença entre a resistência mobilizada pelo golpe do martelo e a resistência mobilizada pela ação de um carregamento estático):

$$FC = \frac{FT}{FD}$$
(5.5)

Sabe-se, através de dados empíricos, que estacas cravadas em solos granulares praticamente não ganham resistência com o passar do tempo, e em alguns casos, podem até mesmo perder parte de sua resistência.

Já no caso de solos argilosos, a prática mostra que o ganho de resistência após a cravação ("set up") é mais pronunciado, podendo a resistência crescer mais de três vezes após a cravação inicial (Alves, 2004).

Quanto ao fator de amplificação dinâmica, solos argilosos com amortecimento viscoso acentuado tendem a oferecer resistências maiores a esforços dinâmicos do que a esforços estáticos. No caso de solos granulares, pode eventualmente haver algum efeito dinâmico relativo ao amortecimento hiterético ou radial (Alves, 2004).

Para o presente estudo, foi adotado para FT o valor mínimo de 0,9 (solos granulares) e o valor máximo de 3,0 (solos argilosos). Para FD, adotou-se um mínimo de 1,0 (solos granulares em geral) e um máximo de 2,0 (solos argilosos).

Sintetizando os valores expostos, tem-se:

• Para solos granulares:

$$FC = \frac{FT}{FD} = \frac{0.9}{1.0} = 0.9$$

• Para solos coesivos:

$$FC = \frac{FT}{FD} = \frac{3,0}{2,0} = 1,5$$

Adotou-se, portanto, uma faixa de variação possível para a variável aleatória FC entre 0,9 e 1,5, com a média no centro do intervalo e um coeficiente de variação assumido com o valor de 15%.

$$\mu_{FC} = 1,2$$

$$CV_{FC} = 15\%$$

$$\sigma_{FC} = CV_{FC} \times \mu_{FC} = 0,18$$

No caso da variável aleatória *FC*, também serão utilizados os mesmos parâmetros nas análises individuais dos módulos, bem como na análise que contempla a amostra total das 300 estacas.

5.5 – VERIFICAÇÃO DA CORRELAÇÃO ENTRE AS VARIÁVEIS ALEATÓRIAS

Como estão sendo consideradas as variabilidades de três variáveis aleatórias, procedeu-se a verificação entre possíveis correlações entre elas.

Fisicamente, parece improvável existir uma correlação entre as variáveis e_1 (eficiência do martelo de cravação) e *FC* (Fator de Correção), assim como não parece haver qualquer correlação entre *FC* e *s* (nega). Porém, pode-se esperar uma correlação importante entre as variáveis *s* e e_1 .

Para quantificar esta correlação, foi utilizada a própria fórmula dinâmica dos Dinamarqueses, isolando a variável nega (s):

$$s = \frac{e_1 \cdot W \cdot h}{Q_d} - \frac{1}{2} \sqrt{2e_1 W h \frac{L}{EA}}$$
(5.6)

Em seguida, atribuiram-se valores para a variável eficiência do martelo (e_1) e calcularam-se os valores das negas (s), para três valores de capacidade de carga dinâmica. As demais grandezas são determinísticas e referem-se às características das estacas e do martelo de cravação, as quais são apresentadas na Tabela 5.4 a seguir:

E (KN/m²) =	4000000
A (m²) =	0,306305
L (m) =	48,000
W (KN) =	134,390
h(m)=	1,000

TABELA 5.4 Grandezas determinísticas das estacas e do martelo de cravação:

Onde:

E é o módulo de elasticidade das estacas;

A é área da seção transversal das estacas;

L é o comprimento das estacas;

W é o peso do martelo de cravação; e

h é a altura de queda do martelo de cravação.

A Tabela 5.5 a seguir mostra os valores atribuídos a e_1 e os seus correspondentes valores de *s*. Nota-se um coeficiente de correlação R^2 muito próximo a 1,0 para os três valores da resistência dinâmica Q_d :

TABELA 5.5 Correlação entre e_1 e	s para três valores de Q_d atribuío	los:
--	---------------------------------------	------

$Q_d = 6600KN$		$Q_d = 3300KN$		$Q_d = 1650KN$	
e_1	S	e_1	S	e_1	S
0.5	-0.00129	0.5	0.008889	0.5	0.029252
0.6	-0.00035	0.6	0.011867	0.6	0.036301
0.7	0.000679	0.7	0.014932	0.7	0.043439
0.8	0.001778	0.8	0.018067	0.8	0.050647
0.9	0.002934	0.9	0.02126	0.9	0.057911
1	0.004137	1	0.024499	1	0.065224
R ² =0.99	9044	R ² =0.9	999884	R ² =0.9	999978

Na Figura 5.9, a seguir, mostram-se graficamente os valores da Tabela 5.5:

Figura 5.9 – Correlação entre as variáveis aleatórias Nega e Eficiência do Martelo.

Pelo gráfico acima, pode-se visualmente perceber a forte correlação entre as variáveis aleatórias *s* e e_1 , o que é comprovado pelos valores de R^2 da Tabela 5.5.

5.6 – CÁLCULO DA CAPACIDADE DE CARGA DAS ESTACAS ATRAVÉS DA FÓRMULA DINÂMICA DOS DINAMARQUESES

Para possibilitar a inserção das incertezas oriundas das três variáveis aleatórias (e_1, s, FC) na fórmula dinâmica dos Dinamarqueses, serão adotadas as técnicas de simulação de Rosenblueth (ou Método das Estimativas Pontuais) e do Método de Monte Carlo, descritas, respectivamente, nos itens 2.3 e 2.4.

5.6.1 – Aplicação do Método de Rosenblueth (ou Método das Estimativas Pontuais)

Com os parâmetros das distribuições de probabilidade das três variáveis aleatórias descritas nos itens 5.4.1, 5.4.2 e 5.4.3, procedeu-se o cálculo da capacidade de carga das estacas, utilizando-se a técnica de simulação de Rosenblueth. A seguir são apresentados os

parâmetros das três variáveis aleatórias de forma sintetizada, que alimentarão o cálculo de Q_u pela Fórmula dos Dinamarqueses:

• Parâmetros das distribuições das negas:

TABELA 5.6 Parâmetros das distribuições da negas por módulo e da amostra total:

	μ_s (m)	σ_{s} (m)	$CV_{S}(\%)$
Módulo 1	0,002192	0,0009309	42,5
Módulo 2	0,002573	0,0005638	21,9
Módulo 3	0,002583	0,0003701	14,3
Módulo 4	0,002617	0,0002817	10,8
Módulo 5	0,002675	0,0002886	10,8
Amostra total	0,002528	0,0005679	22,5

• Parâmetros da distribuição da eficiência do martelo de cravação:

$$\mu_{e_1} = 69\%$$

$$\sigma_{e_1} = 17\%$$

$$CV_{e_1} = \frac{\sigma_{e_1}}{\mu_{e_1}} = 25\%$$

• Parâmetros da distribuição do fator de correção:

$$\mu_{FC} = 1,2$$

 $CV_{FC} = 15\%$
 $\sigma_{FC} = CV_{FC} \times \mu_{FC} = 0,18$

Conforme abordado nos itens 5.4.2 e 5.4.3, os parâmetros apresentados das distribuições de e_1 e *FC* serão utilizados tanto nas análises individuais dos módulos, como na análise considerando a amostra total das 300 estacas.

Aqui cabe ressaltar que, apesar da verificação da existência de correlação entre as variáveis $s e e_1$, descrita no item 5.5, esta correlação não será levada em conta, já que a

consideração da correlação nos cálculos conduz a um valor menor da dispersão de Q_u . Este resultado é esperado, pois o conhecimento da correlação significa a inserção de mais informação ao sistema, o que conduz a uma menor incerteza e uma menor dispersão da variável dependente.

Portanto, a favor da segurança, o cálculo de Q_u pelo método de Rosenblueth não considerará a correlação entre as variáveis aleatórias $s e e_1$.

Aplicando-se o método descrito no item 2.3, obtêm-se as seguintes equações para descrever o valor esperado, e o desvio padrão da capacidade de carga do solo:

$$E[Q_{u}] = \frac{1}{8} [(1 + \rho_{12} + \rho_{23} + \rho_{31}). Q_{u+++} + (1 + \rho_{12} + \rho_{23} + \rho_{31}). Q_{u---} + (1 + \rho_{12} - \rho_{23} - \rho_{31}). Q_{u++-} + (1 + \rho_{12} - \rho_{23} - \rho_{31}). Q_{u-++} + (1 - \rho_{12} - \rho_{23} + \rho_{31}). Q_{u+-+} + (1 - \rho_{12} - \rho_{23} + \rho_{31}). Q_{u-+-} + (1 - \rho_{12} + \rho_{23} - \rho_{31}). Q_{u+--} + (1 - \rho_{12} + \rho_{23} - \rho_{31}). Q_{u-++}]$$
(5.7)

$$E[Q_{u}^{2}] = \frac{1}{8} [(1 + \rho_{12} + \rho_{23} + \rho_{31}) \cdot Q_{u+++}^{2} + (1 + \rho_{12} + \rho_{23} + \rho_{31}) \cdot Q_{u---}^{2} + (1 + \rho_{12} - \rho_{23} - \rho_{31}) \cdot Q_{u-++}^{2} + (1 + \rho_{12} - \rho_{23} - \rho_{31}) \cdot Q_{u-++}^{2} + (1 - \rho_{12} - \rho_{23} + \rho_{31}) \cdot Q_{u+-+}^{2} + (1 - \rho_{12} - \rho_{23} + \rho_{31}) \cdot Q_{u-+-}^{2} + (1 - \rho_{12} + \rho_{23} - \rho_{31}) \cdot Q_{u+--}^{2} + (1 - \rho_{12} + \rho_{23} - \rho_{31}) \cdot Q_{u-++}^{2}]$$

$$(5.8)$$

$$\sigma_{Q_u} = \sqrt{E[Q_u^2] - (E[Q_u])^2}$$
(5.9)

Nas Tabelas 5.7 a 5.13 a seguir são mostrados os valores de entrada do método de Rosenblueth, primeiramente por módulo de 60 estacas e depois, da amostra total das 300 estacas:

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0031	0.8625	1.38	+++	8793.4	77323018	1
0.0013	0.5175	1.02		5485.2	30087446	1
0.0031	0.8625	1.02	+ + -	6499.4	42242632	1
0.0013	0.5175	1.38	+	7421.2	55073560	1
0.0031	0.5175	1.38	+ - +	6487.3	42084492	1
0.0013	0.8625	1.02	- + -	7240.5	52424417	1
0.0031	0.5175	1.02	+	4794.9	22991339	1
0.0013	0.8625	1.38	- + +	9795.9	95960266	1

TABELA 5.7 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo 1.

TABELA 5.8 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo 2.

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0031	0.8625	1.38	+ + +	8786.3	77198790	1
0.0020	0.5175	1.02		5185.0	26884501	1
0.0031	0.8625	1.02	++-	6494.2	42174764	1
0.0020	0.5175	1.38	+	7015.0	49210730	1
0.0031	0.5175	1.38	+ - +	6480.8	42001380	1
0.0020	0.8625	1.02	- + -	6923.0	47928503	1
0.0031	0.5175	1.02	+	4790.2	22945933	1
0.0020	0.8625	1.38	- + +	9366.5	87730720	1

TABELA 5.9 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo 3.

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0030	0.8625	1.38	+ + +	8875.8	78780646	1
0.0022	0.5175	1.02		5109.0	26101459	1
0.0030	0.8625	1.02	+ + -	6560.4	43038954	1
0.0022	0.5175	1.38	+	6912.1	47777412	1
0.0030	0.5175	1.38	+ - +	6562.3	43063131	1
0.0022	0.8625	1.02	- + -	6841.4	46805262	1
0.0030	0.5175	1.02	+	4850.4	23525983	1
0.0022	0.8625	1.38	- + +	9256.1	85674683	1

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0029	0.8625	1.38	+++	8903.1	79264309	1
0.0023	0.5175	1.02		5064.6	25649729	1
0.0029	0.8625	1.02	++-	6580.5	43303186	1
0.0023	0.5175	1.38	+	6852.0	46950541	1
0.0029	0.5175	1.38	+ - +	6587.1	43389257	1
0.0023	0.8625	1.02	- + -	6793.6	46152750	1
0.0029	0.5175	1.02	+	4868.7	23704150	1
0.0023	0.8625	1.38	- + +	9191.3	84480294	1

TABELA 5.10 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo 4.

TABELA 5.11 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – módulo 5.

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0030	0.8625	1.38	+++	8870.9	78692620	1
0.0024	0.5175	1.02		5046.0	25462064	1
0.0030	0.8625	1.02	+ + -	6556.7	42990864	1
0.0024	0.5175	1.38	+	6826.9	46607031	1
0.0030	0.5175	1.38	+ - +	6557.7	43003852	1
0.0024	0.8625	1.02	- + -	6773.5	45880686	1
0.0030	0.5175	1.02	+	4847.0	23493598	1
0.0024	0.8625	1.38	- + +	9164.2	83982294	1

TABELA 5.12 Valores de entrada do cálculo de Q_u pelo método de Rosenblueth – amostra total das 300 estacas.

<i>s</i> (<i>m</i>)	<i>e</i> ₁	FC	configuração	Q_u	Q_u^2	p_{Q_u}
0.0031	0.8625	1.38	+ + +	8806.3	77550205	1
0.0020	0.5175	1.02		5203.8	27079592	1
0.0031	0.8625	1.02	+ + -	6509.0	42366747	1
0.0020	0.5175	1.38	+	7040.4	49567834	1
0.0031	0.5175	1.38	+ - +	6499.0	42236607	1
0.0020	0.8625	1.02	- + -	6943.1	48206831	1
0.0031	0.5175	1.02	+	4803.6	23074441	1
0.0020	0.8625	1.38	- + +	9393.6	88240186	1

Os valores de Q_u calculados nas tabelas acima foram determinados pela fórmula dinâmica dos Dinamarqueses, descrita no item 2.1.2, e os valores obtidos do valor esperado, do desvio padrão e do coeficiente de variação de Q_u são mostrados na Tabela 5.13 a seguir:

	$E[Q_u](KN)$	$\sigma_{Q_u}(KN)$	CV_{Q_u}
Módulo 1	7064,7	1537,3	21,8%
Módulo 2	6880,1	1474,1	21,4%
Módulo 3	6870,9	1461,6	21,3%
Módulo 4	6855,1	1455,8	21,2%
Módulo 5	6830,4	1452,6	21,3%
Amostra total	6899,8	1477,3	21,4%

TABELA 5.13 Parâmetros das distribuições de Q_u calculados pelo método de Rosenblueth.

5.6.2 – Aplicação do Método de Monte Carlo

Com objetivos semelhantes aos do Método de Rosenblueth, o Método de Monte Carlo também busca o conhecimento de parâmetros probabilísticos de uma variável aleatória dependente, conhecendo-se os parâmetros das variáveis independentes a ela associadas, conforme explanado no item 2.4. Porém, neste caso, exige-se um esforço computacional muito maior, visto que são gerados n valores para cada variável independente, (e_1, s, FC) , assim como os mesmos n valores para a variável dependente de interesse (Q_u) . No presente estudo foram gerados 1 milhão de pontos amostrais para o cálculo de Q_u .

Neste caso também foi desprezada a correlação entre e_1 e s, pelos mesmos motivos citados no item 5.6.1.

Os parâmetros das distribuições das variáveis independentes utilizados no cálculo de Q_u pelo Método de Monte Carlo serão os mesmos utilizados no método de Rosenblueth, sintetizados no item 5.6.1.

Cabe ressaltar, que o mesmo tratamento dado à distribuição das negas, citado no item 5.4.1, será adotado também para as distribuições das variáveis Eficiência do martelo (e_1) e Fator de Correção (FC), ou seja, serão efetuadas duas simulações de Monte Carlo para Q_u , uma considerando variáveis normais, e outra considerando variáveis beta.

a) Simulação de Monte Carlo com variáveis aleatórias Normais.

Através de uma rotina computacional, foram gerados 1 milhão de pontos amostrais considerando as distribuições de e_1 , s, FC como normais. Aplicando-se, a cada iteração, a fórmula dinâmica dos Dinamarqueses para o cálculo de Q_u , foram obtidos também 1 milhão de valores aleatórios de Q_u , os quais são representados nas Figuras 5.10 a 5.15 a seguir em forma de histograma, com suas respectivas médias, desvios padrão e coeficientes de variação:

Figura 5.10 – Distribuição de Q_u calculado por variáveis normais – módulo 1.

Parâmetros da distribuição de Q_u calculado por variáveis normais para o módulo 1:

$$\mu_{Q_u} = 7063,5KN$$
$$\sigma_{Q_u} = 1555,3KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 22,0\%$$

Figura 5.11 – Distribuição de Q_u calculado por variáveis normais – módulo 2.

Parâmetros da distribuição de Q_u calculado por variáveis normais para o módulo 2:

$$\mu_{Q_{u}} = 6876,4KN$$

$$\sigma_{Q_{u}} = 1488,7KN$$

$$CV_{Q_{u}} = \frac{\sigma_{Q_{u}}}{\mu_{Q_{u}}} = 21,7\%$$

Figura 5.12 – Distribuição de Q_u calculado por variáveis normais – módulo 3.

Parâmetros da distribuição de Q_u calculado por variáveis normais para o módulo 3:

$$\mu_{Q_u} = 6865,9KN$$
$$\sigma_{Q_u} = 1477,0KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,5\%$$

Figura 5.13 – Distribuição de Q_u calculado por variáveis normais – módulo 4.

Parâmetros da distribuição de Q_u calculado por variáveis normais para o módulo 4:

$$\mu_{Q_u} = 6852,5KN$$

$$\sigma_{Q_u} = 1472,0KN$$

$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,5\%$$

Figura 5.14 – Distribuição de Q_u calculado por variáveis normais – módulo 5.

Parâmetros da distribuição de Q_u calculado por variáveis normais para o módulo 5:

$$\mu_{Q_u} = 6826,9KN$$
$$\sigma_{Q_u} = 1468,3KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,5\%$$

Figura 5.15 – Distribuição de Q_u calculado por variáveis normais – amostra total.

Parâmetros da distribuição de Q_u calculado por variáveis normais para a amostra total das estacas:

$$\mu_{Q_u} = 6897,5KN$$

$$\sigma_{Q_u} = 1493,3KN$$

$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,7\%$$

Era realmente esperado, neste caso, que as distribuições de Q_u atendessem a uma distribuição normal, visto que as suas três variáveis aleatórias foram também consideradas como normais.

b) Simulação de Monte Carlo com variáveis aleatórias Beta.

Como a distribuição Beta exige a determinação de limites inferiores e superiores definidos, será feito um breve comentário sobre os limites adotados para as distribuições beta das três variáveis aleatórias:

• Distribuição da eficiência do martelo de cravação (e_1) : como o parâmetro e_1 representa uma eficiência, é fisicamente impossível obter-se valores abaixo de zero e acima de um, logo, estes foram os limites definidos para a distribuição de e_1 :

$$0,0 \le e_1 \le 1,0$$

• Distribuição das negas (s): foram adotados os limites superior e inferior conforme os valores observados durante a cravação das estacas, logo, a distribuição beta das negas foi definida entre os valores apresentados na Tabela 5.14 a seguir:

TABELA 5.14 Limites superiores e inferiores das distribuições Beta das negas por módulo e da amostra total.

Módulo 1	$0,0001m \le s \le 0,0043m$
Módulo 2	$0,0005m \le s \le 0,0038m$
Módulo 3	$0,0010m \le s \le 0,0035m$
Módulo 4	$0,0020m \le s \le 0,0030m$
Módulo 5	$0,0020m \le s \le 0,0030m$
Amostra total	$0,0001m \le s \le 0,0043m$

• Distribuição do Fator de Correção (*FC*): a variável *FC*, conforme já abordado no item 5.4.3, assumirá os seguintes limites:

$$0,9 \le FC \le 1,5$$

Da mesma forma que no item 5.6.2.a, foram geradas as variáveis aleatórias através de rotina computacional, porém, desta vez utilizando distribuições Beta para definir e_1 , s, FC.

Aplicando-se novamente a fórmula dinâmica dos Dinamarqueses a cada iteração, foram obtidas as distribuições de Q_u representadas nas Figuras 5.16 a 5.21 a seguir por seus histogramas, juntamente com suas médias, desvios padrão e coeficientes de variação. A título de comparação, foi incluída nos gráficos a distribuição normal correspondente, em linha cheia.

Figura 5.16 – Distribuição de Q_u calculado por variáveis beta – módulo 1. Parâmetros da distribuição de Q_u calculado por variáveis beta para o módulo 1:

$$\mu_{Q_u} = 7056,7KN$$
$$\sigma_{Q_u} = 1576,8KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 22,3\%$$

Figura 5.17 – Distribuição de Q_u calculado por variáveis beta – módulo 2.

Parâmetros da distribuição de Q_u calculado por variáveis beta para o módulo 2:

$$\mu_{Q_u} = 6872,7KN$$

$$\sigma_{Q_u} = 1515,8KN$$

$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 22,1\%$$

Figura 5.18 – Distribuição de Q_u calculado por variáveis beta – módulo 3.

Parâmetros da distribuição de Q_u calculado por variáveis beta para o módulo 3:

$$\mu_{Q_u} = 6863,5KN$$

$$\sigma_{Q_u} = 1502,1KN$$

$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,9\%$$

Figura 5.19 – Distribuição de Q_u calculado por variáveis beta – módulo 4.

Parâmetros da distribuição de Q_u calculado por variáveis beta para o módulo 4:

$$\mu_{Q_u} = 6847,5KN$$
$$\sigma_{Q_u} = 1497,3KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,9\%$$

Figura 5.20 – Distribuição de Q_u calculado por variáveis beta – módulo 5.

Parâmetros da distribuição de Q_u calculado por variáveis beta para o módulo 5:

$$\mu_{Q_u} = 6823,0KN$$

$$\sigma_{Q_u} = 1493,1KN$$

$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 21,9\%$$

Parâmetros da distribuição de Q_u calculado por variáveis beta para a amostra total das estacas:

$$\mu_{Q_u} = 6892,3KN$$

$$\sigma_{Q_u} = 1518,8KN$$
$$CV_{Q_u} = \frac{\sigma_{Q_u}}{\mu_{Q_u}} = 22,0\%$$

Observou-se que as duas distribuições de Q_u (normal e beta) possuem média e desvio padrão muito próximas. Ainda, graficamente, pode-se observar pelo histograma de Q_u calculado através de variáveis beta, que a forma do gráfico é muito próxima à forma da distribuição normal, fato este que pode ser atribuído ao Teorema do Limite Central, pelo qual, quanto maior o tamanho da amostra, mais ela tenderá à normalidade.

5.7 – ESCOLHA DA FUNÇÃO DE VEROSSIMILHANÇA COM BASE NAS TÉCNICAS DE SIMULAÇÃO EFETUADAS

A aplicação dos métodos de Rosenblueth e Monte Carlo resultaram nos seguintes valores de média, desvio padrão e coeficiente de variação para a função de verossimilhança, os quais são apresentados na Tabela 5.15 a seguir:

				MONTE CARLO						
	KUSENBLUETH			VARIÁVEIS NORMAIS			VARIÁVEIS BETA			
	Média (KN)	Desv. Pad (KN)	Coef. Var.	Média (KN)	Desv. Pad (KN)	Coef. Var.	Média (KN)	Desv. Pad (KN)	Coef. Var.	
Módulo 1	7064.7	1537.3	21.8%	7063.5	1555.3	22.0%	7056.7	1576.8	22.3%	
Módulo 2	6880.1	1474.1	21.4%	6876.4	1488.7	21.6%	6872.7	1515.8	22.1%	
Módulo 3	6870.9	1461.6	21.3%	6865.9	1477.0	21.5%	6863.5	1502.1	21.9%	
Módulo 4	6855.1	1455.8	21.2%	6852.5	1472.0	21.5%	6847.5	1497.3	21.9%	
Módulo 5	6830.4	1452.6	21.3%	6826.9	1468.3	21.5%	6823.0	1493.1	21.9%	
Amostra total	6899.8	1477.3	21.4%	6897.5	1493.3	21.6%	6892.3	1518.8	22.0%	

TABELA 5.15 Capacidade de carga das estacas obtidas pelos métodos de Rosenblueth e de

 Monte Carlo.

A tabela acima mostra que os valores obtidos pelos métodos de Rosenblueth e de Monte Carlo ficaram muito próximos. As máximas diferenças encontradas foram da ordem de 0,1% para as médias e 2,8% para os desvios padrão. Devido à grande semelhança entre os valores obtidos pelos dois métodos, optou-se pela escolha de apenas uma função de verossimilhança para dar prosseguimento à atualização da capacidade de carga do solo.

Adotou-se a função de verossimilhança obtida pela simulação de Monte Carlo, pelo fato deste método simular um número maior de dados do que o método de Rosenblueth. Quanto à escolha da distribuição de probabilidades das variáveis aleatórias que alimentaram o método de Monte Carlo, foi adotada a distribuição Beta, pelo fato desta distribuição possuir limites definidos e por permitir maior flexibilidade de forma, adequando-se melhor às grandezas físicas simuladas.

5.8 – COMPARATIVO ENTRE A FUNÇÃO DE VEROSSIMILHANÇA E A ESTIMATIVA "À PRIORI"

Nota-se que, de modo geral, os valores médios de capacidade de carga calculados pela função de verossimilhança resultaram menores que os valores calculados pelas estimativas "à priori".

Na Tabela 5.16 a seguir mostra-se, resumidamente, este comparativo entre os parâmetros das distribuições de Q_u :

TABELA 5.16 Comparativo entre as estimativas "à priori" e as funções de verossimilhança por módulo e pela análise geral.

		VEDOS	сомп н						
	AOK	I & VELLO	OSO	DÉCOUR	₹T & QUA	RESMA	VEROSSIIVIILITANÇA		
	$\mu^{P}(KN)$	$\sigma^{P}(KN)$	CV ^P	$\mu^{P}(KN) \sigma^{P}(KN) CV^{P}$		μ^{L} (KN)	σ ^L (KN)	CV ^L	
mód1	6566.3	1057.3	16.1%	8226.6	1536.9	18.7%	7056.7	1576.8	22.3%
mód2	7310.1	1087.2	14.9%	7210.6	1223.9	17.0%	6872.7	1515.8	22.1%
mód3	7344.4	1216.4	16.6%	7901.4	1494.8	18.9%	6863.5	1502.1	21.9%
mód4	7287.8	1223.1	16.8%	8101.2	1579.8	19.5%	6847.5	1497.3	21.9%
mód5	6717.4	1211.3	18.0%	7186.0	1485.8	20.7%	6823.0	1493.1	21.9%
geral	7045.2	1159.1	16.5%	7725.2	1464.2	19.0%	6892.3	1518.8	22.0%

Os menores valores de capacidade de carga obtidos pelas funções de verossimilhança, em relação aos calculados pelas estimativas "à priori", podem ter sido influenciados por, pelo menos, dois fatores. O primeiro diz respeito à pequena eficiência do martelo (69% em média) medida por ocasião dos ensaios de carregamento dinâmico. Esta baixa eficiência pode ser insuficiente para mobilizar toda a resistência da estaca no momento da cravação, refletindo no resultado indicado pela fórmula dos Dinamarqueses.

Outro fator que poder ter contribuído para a diferença entre as estimativas "à priori" e os cálculos da função de verossimilhança é a diferença entre as profundidades de assentamento envolvidas em cada caso.

Nas estimativas "à priori" foram adotadas profundidades de assentamento onde a capacidade de carga das estacas resultasse em um valor igual ou maior do que o dobro do valor da carga de trabalho das estacas, ou seja, $2 \times 3300 KN = 6600 KN$.

Por outro lado, as funções de verossimilhança, através da fórmula dinâmica dos Dinamarqueses, são alimentadas pelos valores das negas, que traduzem as profundidades reais das pontas das estacas, as quais diferiram das profundidades das estimativas "à priori".

Na tabela 5.17 a seguir, apresentam-se as profundidades previstas de assentamento de ponta das estacas, oriundas das estimativas "à priori", e as profundidades reais de assentamento (profundidades médias), as quais influenciaram o cálculo das funções de verossimilhança:

TABELA 5.17 Comparativo entre as profundidades previstas e as reais de assentamento das estacas.

	ELEVA	ÇÕES DE PONTA	DAS ESTACAS
	PRIORIA & V(m)	PRIORI D&O (m)	PROFUNDIDADES
	I KIOKI A& V (III)	T KIOKI D&Q (III)	REAIS MÉDIAS (m)
Módulo 1	-44.95	-44.95	-43.88
Módulo 2	-44.65	-43.65	-44.15
Módulo 3	-46.78	-45.78	-44.80
Módulo 4	-46.92	-45.92	-45.00
Módulo 5	-46.87	-45.87	-44.88
Geral	-46.03	-45.23	-44.54

Na tabela acima, as notações "A&V" representa o método de Aoki & Velloso, e "D&Q", o método de Décourt & Quaresma.

Os dados de controle de cravação mostram que, na maioria dos casos, as estacas apoiaram-se, em média, em profundidades menores do que as previstas por ocasião das estimativas "à priori", fato que pode ter influenciado nos valores de capacidade de carga calculados pelas funções de verossimilhança, em relação aos calculados pelas estimativas "à priori".

6 – ESTIMATIVAS POSTERIORES

6.1 – INTRODUÇÃO

Este capítulo apresenta a atualização da capacidade de carga das estacas, através da aplicação direta do Teorema de Bayes, descrito no item 2.2. As estimativas "à priori" e as funções de Verossimilhança, descritas nos capítulos 4 e 5, respectivamente, servirão como subsídios para que, combinadas através do Teorema de Bayes, permitam a obtenção de uma distribuição atualizada da capacidade de carga das estacas.

Cabe ressaltar que serão analisados dois casos no cálculo das estimativas "à posteriori", um considerando as estimativas "à priori" calculadas através do método de Aoki & Velloso, e outro considerando o método de Décourt & Quaresma.

Será demonstrado também o cálculo do indicador de falha, proposto por Guttormsen (1987), apud Cabral (2008) e Magalhães (2011), que permitirá a avaliação da eficiência da atualização efetuada.

6.2 - RESULTADOS OBTIDOS

Os parâmetros das distribuições "à posteriori" foram obtidos a partir da aplicação direta do Teorema de Bayes, descrito no item 2.2.

Nas Tabelas 6.1 e 6.2 a seguir, apresentam-se as estimativas "à posteriori", assim como os valores dos indicadores de falha calculados:

	Módulo 1	Módulo 2	Módulo 3	Módulo 4	Módulo 5	Geral
Média (KN)	6718.4	7161.5	7154.0	7111.6	6759.4	6988.9
Desvio Padrão (KN)	878.1	883.4	945.3	947.3	940.7	921.4
Variância (KN ²)	771117.6	780480.5	893575.6	897293.4	884893.6	848977.7
Coef. Variação	13.1%	12.3%	13.2%	13.3%	13.9%	13.2%
Indicador de Falha	0.26	-0.23	-0.25	-0.23	0.05	-0.08

TABELA 6.1 Estimativas "à posteriori", considerando o método de Aoki & Velloso nas estimativas "à priori".

TABELA 6.2 Estimativas "à posteriori", considerando o método de Décourt & Quaresma nasestimativas "à priori".

	Módulo 1	Módulo 2	Módulo 3	Módulo 4	Módulo 5	Geral
Média (KN)	7656.6	7077.3	7385.0	7440.8	7005.4	7324.0
Desvio Padrão (KN)	1100.6	952.2	1059.6	1086.7	1053.2	1054.1
Variância (KN ²)	1211336.9	906723.3	1122674.8	1181022.1	1109230.7	1111204.1
Coef. Variação	14.4%	13.5%	14.3%	14.6%	15.0%	14.4%
Indicador de Falha	-0.53	-0.17	-0.49	-0.58	-0.17	-0.39

Das Tabelas 6.1 e 6.2 podem-se resumir as seguintes observações:

- a) As dispersões das distribuições "à posteriori", como esperado, são inferiores às dispersões das distribuições "à priori" e também das funções de verossimilhança, o que reflete uma diminuição na incerteza resultante do acréscimo de informações ao sistema através da análise Bayesiana.
- b) Os indicadores de falha resultaram todos menores que 1,5 em módulo, fato este que indica uma atualização satisfatória da capacidade de carga do solo, de acordo com o critério proposto por Guttormsen (1987).

c) Com exceção dos módulos 1 e 5 da tabela 6.1, todos os demais módulos, inclusive as análises gerais, resultaram em um valor negativo do indicador de falha, o que corresponde a valores médios das estimativas "à posteriori" menores que os valores médios das estimativas "à priori". Este fato é uma propagação do efeito já comentado no item 5.8, no qual foi abordado que as funções de verossimilhança resultaram, na maioria dos casos, em valores menores que os das estimativas "à priori". Cabe ressaltar que, mesmo nesses casos, houve um ganho na atualização da capacidade de carga do solo devido à forte diminuição percebida na dispersão das estimativas "à posteriori".

6.3 – COMPARAÇÃO DAS ESTIMATIVAS POSTERIORES COM RESULTADOS DE PROVA DE CARGA ESTÁTICA E ENSAIOS DE CARREGAMENTO DINÂMICO

Esta seção apresenta os resultados obtidos na prova de carga estática realizada na estaca 262, e seu comparativo com os ensaios de carregamento dinâmico e com os valores médios das capacidades de carga do solo calculados através das estimativas posteriores.

Na Tabela 6.3 a seguir, apresentam-se os valores das cargas e dos seus respectivos recalques medidos em quatro deflectômetros instalados na estaca testada 262:

PROVA DE CARGA ESTÁTICA NA ESTACA 262								
CARGA kN)	LEITURA (MIN.)	DEF. 1 (mm)	DEF. 2 (mm)	DEF. 3 (mm)	DEF. 4 (mm)			
0.0								
650.0	30	2.42	1.35	0.57	2.04			
1300.0	30	4.02	1.6	2.47	4.25			
1950.0	30	6.48	5	4.8	6.35			
2600.0	30	8.23	8.23	9.27	9.39			
3250.0	30	10.29	10.46	10.31	11.08			
3900.0	30	13.32	14.02	11.58	11.14			
4225.0	10	14.96	16.48	12.92	12.95			
4550.0	10	16.39	17.11	14.72	14.84			
4875.0	10	17.55	18	16.22	16.19			
5200.0	120	20.33	20.25	18.95	18.09			
4120.0	10	16.87	15.5	17.59	17.14			

TABELA 6.3 Dados da prova de carga estática realizada na estaca nº 262.

3240.0	10	13.95	15.19	14.49	12.51
2120.0	10	10.77	14.84	8.95	9.85
1080.0	10	7.84	9.55	4.94	6.9
0.0			8.7	0.75	1.59

Na Figura 6.1 a seguir, apresenta-se o gráfico de carga x recalque do solo, com base nos valores descritos na Tabela 6.3. Cabe ressaltar que para traçar a curva foi adotada a média dos recalques dos quatro deflectômetros, para cada nível de carregamento.

Figura 6.1 – Curva carga x recalque obtida pela prova de carga estática realizada na estaca nº 262.

Aplicando-se o método de Van der Veen, modificado por Aoki, descrito no item 2.1.2.c, obteve-se a curva extrapolada da prova de carga, a qual é apresentada na Figura 6.2 a seguir:

Figura 6.2 – Extrapolação de Van der Veen para a curva carga x recalque.

Pelo método de Van der Veen, é possível ainda, calcular a carga estimada de ruptura do solo, a qual resultou no valor de 11200KN.

Quanto aos ensaios de carregamento dinâmico, na Tabela 5.3 mostram-se os valores obtidos por ocasião dos ensaios em 22 estacas, os quais mobilizaram uma resistência média de 6261KN.

Na Tabela 6.4 a seguir, apresentam-se os valores médios de capacidade de carga do solo, calculados pelas estimativas posteriores, o valor médio da carga mobilizada nos ensaios de carregamento dinâmico, e o valor da carga de ruptura do solo calculado pela extrapolação de Van der Veen na curva carga x recalque da prova de carga estática efetuada na estaca nº 262:

TABELA 6.4 Comparativo entre as estimativas posteriores, ensaios de carregamento dinâmico e prova de carga estática.

	POSTERIORI (KN)		ENSAIOS DE	PROVA DE
	A & V	D & Q	CARREGAMENTO DINÂMICO (KN)	CARGA ESTÁTICA (KN)
mód1	6718.4	7656.6	6261.0	11200.0
mód2	7161.5	7077.3		
mód3	7154.0	7385.0		
mód4	7111.6	7440.8		
mód5	6759.4	7005.4		
geral	6988.9	7324.0		
A notação "A & V" indica que as estimativas "à priori" utilizadas no cálculo das estimativas posteriores foram baseadas no método de Aoki & Velloso, enquanto a notação "D & Q" indicam o método de Décourt & Quaresma.

Nota-se que o valor obtido da carga de ruptura geotécnica da estaca através da prova de carga estática resultou muito acima dos demais valores de capacidade de carga. Este valor refletiu o comportamento da curva carga x recalque apresentada na Figura 6.1. Nota-se que a curva apresenta um comportamento aproximadamente linear no trecho de aumento do carregamento, sem nem sequer dar indícios de um início de curvatura. Este efeito diminui a eficácia da extrapolação de Van der Veen, resultando em valores exagerados de capacidade de carga.

7 – ANÁLISES DE CONFIABILIDADE

7.1 – INTRODUÇÃO

Este capítulo apresenta o cálculo da confiabilidade do estaqueamento através do seu índice de confiabilidade β e da probabilidade de ruína p_F , os quais foram definidos no item 2.7.

7.2 – RESULTADOS OBTIDOS

A seguir são apresentados os valores dos índices de confiabilidade da estrutura (β), das probabilidades de ruína (p_F), e dos Fatores de Segurança Globais (*FS*), calculados, primeiramente, pela combinação da distribuição das cargas solicitantes com as estimativas "à priori" (Tabela 7.1) e posteriormente pela combinação da distribuição das cargas solicitantes com as estimativas "à posteriori" (Tabela 7.2).

Como a estimativa "à priori" foi baseada nos métodos de Aoki & Velloso e de Décourt & Quaresma, a análise de confiabilidade também foi efetuada para os dois casos.

TABELA 7.1 Índice de confiabilidade, probabilidade de falha e coeficiente de segurança global calculados pela combinação da distribuição das cargas solicitantes e das estimativas "à priori".

	SOLICITAÇÕES X PRIORI													
	A	OKI & VELLOSO	C	DÉC	OURT & QUARE	SMA								
	β	p_F	FS	β	p_F	FS								
Módulo 1	3.55	0.00019	3.13	3.64	0.00014	3.92								
Módulo 2	4.06	0.00002	3.48	3.65	0.00013	3.43								
Módulo 3	3.76	0.00009	3.50	3.53	0.00021	3.76								
Módulo 4	3.70	0.00011	3.47	3.49	0.00024	3.86								
Módulo 5	3.32	0.00045	3.20	3.11	0.00094	3.42								
Geral	3.68	0.00012	3.35	3.49	0.00025	3.68								

Cabe ressaltar que o Fator de Segurança Global, foi obtido dividindo-se o valor da resistência média "à priori" pelo valor da solicitação média.

Na Tabela 7.2 a seguir, mostram-se os valores da análise de confiabilidade combinando-se, desta vez, a distribuição das cargas solicitantes, com as estimativas "à posteriori".

TABELA 7.2 Índice de confiabilidade, probabilidade de falha e coeficiente de segurança global calculados pela combinação da distribuição das cargas solicitantes e das estimativas "à posteriori".

		SOL	ICITAÇÕE	S X POSTE	RIORI	
	Estin	ativa posterior obtida	a pela	Estimativa	posterior obtida pela	l combinação
	combinaçã	o da função de veros	similhança	da função	de verossimilhança e	da estimativa
	e da estin	nativa "à priori" calcu	ılada pelo	"à priori"	calculada pelo métod	o de Décourt
	mé	todo de Aoki & Vello	080		& Quaresma	
	β	p_F	FS	β	p_F	FS
Módulo 1	4.15	0.00002	3.20	4.29	0.00001	3.65
Módulo 2	4.53	0.00000	3.41	4.25	0.00001	3.37
Módulo 3	4.33	0.00001	3.41	4.19	0.00001	3.52
Módulo 4	4.29	0.00001	3.39	4.16	0.00002	3.54
Módulo 5	4.01	0.00003	3.22	3.91	0.00005	3.34
Geral	4.27	0.00001	3.33	4.17	0.00002	3.49

O Fator de Segurança Global foi obtido, desta vez, dividindo-se o valor da resistência média "à posteriori" pelo valor da solicitação média.

Das Tabelas 7.1 e 7.2 acima, podem-se resumir as seguintes observações:

- a) O índice de confiabilidade (β) teve um aumento significativo após a atualização da capacidade de carga do solo através do Teorema de Bayes;
- b) Mesmo com fatores de segurança globais (FS) muito próximos nas Tabelas 7.1 e 7.2, obteve-se uma redução significativa da probabilidade de falha (p_F) do estaqueamento com a atualização através do Teorema de Bayes.

8 – CONCLUSÕES E SUGESTÕES PARA FUTURAS PESQUISAS

8.1 – CONCLUSÕES

Quanto às estimativas "à priori":

- a) No módulo 1, a capacidade de carga correspondente a duas vezes a carga de trabalho prevista para as estacas, foi atingida na mesma elevação para os dois métodos de previsão adotados (Aoki & Velloso e Décourt & Quaresma). Nos módulos 2 a 5, este valor foi atingido sempre com um metro a mais de profundidade quando calculado por Aoki & Velloso, em relação ao cálculo por Décourt & Quaresma.
- b) Os valores de capacidade de carga calculados pelo método de Aoki & Velloso apresentaram uma variabilidade um pouco menor que os valores calculados por Décourt & Quaresma. O primeiro método conduziu a coeficientes de variação entre 15% e 18%, enquanto o segundo método conduziu a valores entre 17% e 21%.

Quanto à Função de Verossimilhança:

- a) As duas técnicas de simulação adotadas (Método de Rosenblueth e Método de Monte Carlo) conduziram a valores muito próximos para a capacidade de carga das estacas. As máximas diferenças encontradas entre os dois métodos foram da ordem de 0,1% para as médias e 2,8% para os desvios padrão.
- b) A adoção da distribuição Beta para definir as variáveis aleatórias que alimentaram o Método de Monte Carlo, além de ser vantajosa por possuir limites definidos e maior flexibilidade de forma, o que reflete melhor a realidade das grandezas físicas simuladas, ainda conduziu a um histograma dos valores calculados da capacidade de carga do solo cuja forma é muito próxima a uma distribuição Normal, fato este que pode ser atribuído ao Teorema do Limite Central, pelo qual, quanto maior o tamanho da amostra, mais ela tenderá à normalidade.
- c) As cotas reais de assentamento das estacas resultaram, em média, um pouco acima das cotas previstas por ocasião das estimativas "à priori", fato este que pode

- d) explicar os valores de capacidade de carga um pouco menores quando calculados pelas funções de verossimilhança, em relação aos calculados pelas estimativas "à priori". Outro fator que pode ter contribuído para esta diferença foi a baixa eficiência do martelo de cravação.
- e) Os coeficientes de variação das Funções de Verossimilhança resultaram, tanto nas análises por módulo, quanto na análise global, com valores muito parecidos, em torno de 22%. Esta variabilidade reflete a heterogeneidade do solo, traduzida pelas negas, assim como a variabilidade intrínseca de duas variáveis aleatórias (eficiência do martelo de cravação e fator de correção da fórmula dinâmica).

Quanto às estimativas "à posteriori":

- a) Os indicadores de falha, propostos por Guttormsen (1987), resultaram, em todas as análises, sempre menores que 1,5 em módulo, o que indica uma atualização satisfatória da capacidade de carga.
- b) Com exceção dos módulos 1 e 5 da análise considerando a estimativa "à priori" calculada pelo método de Aoki & Velloso, todos os demais casos resultaram em valores negativos de indicadores de falha, o que traduz valores médios de capacidade de carga calculados pelas funções de verossimilhança menores que os valores calculados pelas estimativas "à priori".
- c) Os coeficientes de variação das estimativas posteriores resultaram entre 12% e 14% nas análises considerando as estimativas "à priori" calculadas pelo método de Aoki & Velloso, e entre 13% e 15% nas análises considerando o método de Décourt & Quaresma. Como esperado pelo Teorema de Bayes, estes valores resultaram abaixo dos coeficientes de variação tanto das estimativas "à priori", quanto das funções de verossimilhança. Esta diminuição da dispersão é fruto do acréscimo de informação proveniente dos dados observados durante a obra (negas), e reflete o ganho de confiabilidade obtido.

Quanto à análise de confiabilidade:

a) Os valores dos índices de confiabilidade, tanto das análises por módulo, quanto nas análises globais, resultaram maiores que 3,09, valor que, segundo Aoki (2002), são

considerados aceitáveis na área de engenharia de fundações, pois conduzem a probabilidades de ruína inferiores a 1/1000 eventos.

- b) Os valores dos índices de confiabilidade obtidos da combinação da distribuição das cargas solicitantes com as estimativas posteriores resultaram superiores aos obtidos pela combinação das cargas solicitantes com as estimativas "à priori", mais uma vez mostrando que a atualização da capacidade de carga do solo foi satisfatória, traduzindo também o ganho de confiabilidade obtido após a atualização.
- c) Os Fatores de Segurança Global obtidos pela combinação da distribuição das cargas solicitantes com as estimativas posteriores resultaram muito próximos, em alguns casos até inferiores aos obtidos pela combinação das cargas solicitantes com as estimativas "à priori". Este fato, que na engenharia clássica poderia sugerir nenhum ganho de confiança, é contrariado pela significativa redução da probabilidade de falha da estrutura após a atualização através do teorema de Bayes. Este resultado mostra também como uma análise puramente determinística pode ser equivocada, sugerindo grande margem de segurança apenas pelo cálculo do Fator de Segurança Global, sem atentar para as dispersões das curvas de Solicitações e de Resistências em torno de seus valores médios.

8.2 – SUGESTÕES PARA FUTURAS PESQUISAS

- a) Estender a aplicação da análise estatística, através do Teorema de Bayes e análises de confiabilidade, a outras obras portuárias da cidade de Rio Grande e região.
- b) Utilizar outras metodologias de previsão, teóricas e semi-empíricas, para elaboração das estimativas "à priori" de capacidade de carga.
- c) Utilizar outras metodologias para definição da função de verossimilhança a partir de dados de cravação, como, por exemplo, soluções baseadas na teoria de propagação de ondas, bem como outros tipos de fórmulas dinâmicas.
- d) Incluir no estudo a variabilidade nas cargas sobre as estacas, oriunda dos diversos cenários de carregamento previstos para a estrutura.
- e) Incluir no estudo a variabilidade intrínseca dos métodos de medição de negas em estacas.

REFERÊNCIAS BIBLIOGRÁFICAS

ALONSO, U. R. **Previsão e Controle das Fundações.** São Paulo, editora Edgard Blucher Ltda, 4ª reimpressão, 2009.

ALVES, A. M. L. Análise Probabilística de Problemas Geotécnicos – Aplicação à Argila do Sarapuí. Revista Solos e Rochas, V.24, Nº 1, pp. 83-93, 2001.

ALVES, A. M. L. A Influência da Viscosidade do Solo e do Tempo após a Cravação na Interação Estaca-Solo em Argilas. 2004, Tese (Doutorado em Engenharia Civil). UFRJ - Universidade Federal do Rio de Janeiro.

ALVES, A. M. L., LOPES, F. R. e DANZIGER, B. R. Métodos Dinâmicos para Previsão e Controle do Comportamento de Estacas Cravadas, Teoria e Prática na Engenharia Civil, V.4, pp.12-21, 2004 (http://www.mikrus.com.br/~revistatpec/sumario_numero4.htm).

ANG, A. H. S. e TANG, W. H. **Probability Concepts in Engineering Planning and Design.** John Wiley & Sons, Inc, Vol. 1 e 2, 1984.

AOKI, N. VELLOSO D de A. An Aproximate Method to Estimate the Bearing Capacity of Piles. *Congresso Panamericano de Mecânica dos Solos e Engenharia de Fundações*, vol.1, pp. 367-376, Buenos Aires, 1975.

AOKI, N. **Considerações sobre a capacidade de carga de estacas isoladas.** Notas de aula. Universidade Gama Filho, Rio de Janeiro, 1976.

AOKI, N. Novo Conceito de Carga Admissível de Fundação Profunda Baseado em Probabilidade de Ruína. In: III Simpósio de Prática de Engenharia Geotécnica da Região Sul, 2002, Joinville. Anais do GEOSUL. 2002. Porto Alegre: Gráfica e Editora Pallotti, 2002. pp. 131-139.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Estacas – Ensaios de Carregamento Dinâmico. NBR 13208. Rio de Janeiro, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Estacas – Prova de Carga Estática – Método de Ensaio. NBR 12131. Rio de Janeiro, 2006.

CABRAL, E. V. Contribuição à Confiabilidade de Estacas Cravadas através de um Estudo de Caso com Aplicação da Teoria Bayesiana. Rio de Janeiro, Julho, 2008. Dissertação (Mestrado em Engenharia Civil). UERJ – Universidade do Estado do Rio de Janeiro.

CINTRA, J. C. A., AOKI, N. **Fundações por estacas: projeto geotécnico.** São Paulo, editora Oficina de Textos, 2010.

DÉCOURT, L. e QUARESMA, A. R. **Capacidade de Carga de Estacas a partir de valores de SPT**. Anais, VI COBRAMSEF, V. 1, pp. 45-53, Rio de Janeiro, 1978.

DANZINGER, B. R., FERREIRA, J. S. **Backanalysis of Steel Pile Driving for Quality Assurance.** Anais, 6. International Conference on the Application of the Stress – Wave Theory to Piles, São Paulo, Brasil, pp. 657-663, 2000.

DZIEKANIAK, N. L. Remodelação de Obras Portuárias: Fundações em Estacas Mistas no Porto Novo do Rio Grande. Rio Grande, maio, 2005. Dissertação (Mestrado em Engenharia Oceânica). FURG – Universidade Federal do Rio Grande.

FAGUNDES, D. F. Estacas do Terminal de Contêineres do Porto do Rio Grande: Previsão e Observação de Comportamento com Ênfase em Método Probabilístico. Rio Grande, 2007. Trabalho de Conclusão de Curso em Engenharia Civil, FURG – Fundação Universidade Federal do Rio Grande.

FAGUNDES, D. F. Previsão e Observação do Desempenho das Estacas de Ponta Aberta do Terminal de Contêineres de Rio Grande/RS. In: SEFE 7, 2012, São Paulo.

GOOGLE MAPS. Página Eletrônica do Google Maps. Acessado em dezembro de 2012. www.googlemaps.com. GUTTORMSEN, T. R. Uncertainty in Offshore Geotechnical Engineering. Application of Bayesian Theory to Pile Driving Predictions. Research Report Societe Nationale Elf Aquitaine. NGI Report 85307-9, 1987.

HACHICH, W. Investigações Geotécnicas. In: Fundações: Teoria e Prática. ABMS ABF São Paulo: PINI, 2ª edição, 1998.

HARR, M. E. Reliability-Based Design in Civil Engineering. New York, McGraw-Hill, 1987.

LACASSE, S. e GOULOIS, A. **Reliability Analysis of Axial Pile Capacity.** Proceedings of the XII International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, 1989. Anais, Rotterdam, 1989.

LACASSE, S., TAN, A. H. e KEAVENY, J. M. Expert Assistant for Updating Axial pile Capacity from Pile Driving Observations. Proc. Field Measurements in Geotechnics. Sorum, Balkema, 1991.

MAGALHÃES, F. C. Análise das Fundações da Obra de Modernização do Cais do Porto Novo de Rio Grande (RS) Aplicando Metodologia Bayesiana. Rio Grande, Setembro, 2011. Dissertação (Mestrado em Engenharia Oceânica). FURG – Universidade Federal do Rio Grande.

MASSEY, F. J. **The Kolmogorov-Smirnov Test for Goodness of Fit.** Journal of the American Statistical Association. V. 46, N° 253, pp. 68–78, 1951.

PAC 2. Página Eletrônica do Programa de Aceleração do Crescimento 2. Acessado em dezembro de 2012. <u>www.pac.gov.br</u>.

SUPRG. **Página Eletrônica do Porto do Rio Grande.** Superintendência do Porto do Rio Grande. Acessado em dezembro de 2012. <u>www.portoriogrande.com.br</u>.

ROSENBLUETH, E. Point Estimates for Probability Moments. Proc. Nat. Acad. Sci. USA, V. 72, N° 10, 1975.

ROSENBLUETH, E. Two-Point Estimates in Probabilities, Appl. Math. Modelling, V. 5, Oct. 1981.

TECON. **Página Eletrônica do Terminal de Contêineres.** Terminal de Contêineres de Rio Grande. Acessado em julho de 2012. <u>www.tecon.com.br</u>.

VAN DER VEEN, C. The bearing capacity of a pile. 3rd international conference on soil mechanics and foundation engineering, Zurich, 1953.

ANEXOS

A – BOLETINS DE SONDAGEM

CRI	-0027	RELATÓRIO DE ENSAIO PROJESOFI (011)6991-5032 SONDAGEM A PERCUSSÃO Execução de sondagens de simples reconhecimento dos solos NBR 6484/2001 INMETRO														
CONTRA	TANTE	Server	na - Ci	vilsan S.A. Empresas Assoc	iadas de l	Enaenh	aria				FOL	.HA N	l.° 1	/ 4		
OBRA		Prolor	igame	nto do Cais - Berço III do Te	rminal TE	CON Ri	o Grai	nde S/A			ESC	CALA	1	: 100	I	
LOCAL		Rio Gr	ande/	RS							TRA	AB. N.	° 0	54/20	06-0	4
SONDAG	EM	SP.01	CO	TA 1,050 DATA DE INÍCIO TÉRMINO	16/08/200 19/08/200	16 CO 16	ORD. N E	6.445.155 395.959,2	5,42 26	2	REI	N.°				
	PEREII	INTER.	PROFU	v.	CONSI	^{3_} то	RQUE	NUMERO	1	RESI	STÊN	CIA A	PEN	ETRAÇ	ÃO	
COTA	GEOLÓ_	GEOLÓ_	CAMAD	A DESCRIÇÃO DO MATERIA		kç	gf.m	DE GOLPES	4	MOS	TRAD	DOR	ripo ·	TERZA	.GHI	N. A.
(m)	GICO	GICA	(m)		COMP	мах.	RES.	S. P. T.		N. 35	• DE (30 2	GOLF 25 2	PES/ 0 15	30 cm. i 10	5	(m)
0,05			1,03	Vão da balsa												
-4,95 	T Data/H	SM	13.66	Lâmina d'água Argila pouco siltosa, cinz escuro e preta Método Inicio(m) Fim(m)	a MUITC MOLE ² Lavagem po	tempo-		OBS. :								
1 2 3	 	 	1 1	T. Cavadeira 0,00 T. Espiral Lavagem 14.70 46.30	Profun. de In Estagio 1 (cr Estagio 2 (cr Estagio 3 (cr	icio (m) : n) : n) :		SM=Sedimente 44,15m=Com	to N i fraç	larinho gment	o - 21,4 os de c	10 a 23 concha	8,00m= is, pret	Amostra a	as lava	.das - 42,00 :

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

OBRA

LOCAL

SONDAGEM

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples

reconhecimento dos solos NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia

Rio Grande/RS

FOLHA N.º 2 / 4 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A ESCALA 1:100 TRAB. N.º 064/2006-04

SP.01 COTA 1,050 DATA DE INÍCIO 16/08/2006 COORD. N 6.445.155,42 RE N.°

				TÉRMINO 19/	08/2006		E	395.959,20	6	
СОТА	PERFIL GEOLÓ_	INTER. GEOLÓ_	PROFUN CAMADA	DESCRIÇÃO DO MATERIAL	CONSIS_ TÊNCIA* OU	TOF kg	RQUE jf.m	NUMERO DE GOLPES	RESISTÊNCIA A PENETRAÇÃO AMOSTRADOR TIPO TERZAGHI	N. A.
(m)	GICO	GICA	(m)		COMPA_ CIDADE**	MAX.	RES.	S. P. T.	N.°DE GOLPES / 30 cm. 35 30 25 20 15 10 5	(m)
			14,70	Argila pouco siltosa, cinza escuro e preta				0	0/ 104	
-14.95	 			Argila pouco siltosa,	MOLE*	1 11	1 8	1 104 1 17 13 15	2.25	1
14,00	[<i>‡</i>] <i>Ŧ</i> 7		16,30	plastica, cinza escuro		3	1	<u>1</u> <u>5</u>	5/15	
_			17,00	cinza	MEDIA			30 15		
	///				MEDIA.	3	1	$\frac{3}{15}$ $\frac{7}{15}$ $\frac{11}{15}$		
				Areia fina, pouco argilosa,	COMP.**	5	3	2 9 10 15 15 15	19	
	///			com fragmentos de	MEDIA. COMP.**	3	1	$\frac{6}{15} \frac{7}{15} \frac{5}{15}$	12	
-19.95						3	1	$\frac{3}{21} \frac{1}{9} \frac{2}{17}$	3/ 28	
		sм	21,40			7	3	$\frac{2}{18}$ $\frac{2}{19}$ $\frac{2}{12}$	4/31	
-			23.00	Areia fina, argilosa, cinza escuro	FOFA**	5	4	$\frac{1}{15} \frac{2}{22} \frac{1}{10}$	3/ 32	
-			20,00	Areia fina, pouco argilosa,	1	8	7	$\frac{2}{23}$ $\frac{1}{10}$ $\frac{2}{15}$	3' 25 /	
-			25.00	cinza		3	1	$\frac{2}{18}$ $\frac{2}{16}$ $\frac{1}{11}$	3/ 27	
-24,95			25,70	Argila siltosa, pouco arenosa (areia fina), cinza		1	1	$\frac{2}{22}$ $\frac{2}{15}$ $\frac{2}{11}$	4/26	
				Argila siltosa, plástica, cinza	MOLE*	1	1	$\frac{2}{23}$ $\frac{1}{11}$ $\frac{2}{15}$	3/ 26	
-	(†/7/7 5/7/7/		28.00	escuro		3	1	$\frac{2}{22} \frac{1}{8} \frac{2}{15}$	3/ 23	
	/≠/≠/		20,00	 	1					
Leitura 1 2 3	Data/Ho	ora N./ 	4.(m) T T L	Método Inicio(m) Fim(m) Lava Cavadeira 0,00 Profi Espiral Esta avagem 14,70 46,30 Esta	gem por t un. de Inic gio 1 (cm) gio 2 (cm) gio 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sedimento 44,15m=Com f	o Marinho - 21,40 a 23,00m=Amostras lavada ragmentos de conchas, preta	as - 42,0

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

EPT - ENGENHARIA E PESQUISAS TECNOLÓGICAS S.A. Rua Catão, 523 - Lapa - São Paulo/SP - CEP 05049-000 - PABX: (11) 3873-3399 - Fax: (11) 3672-5411 - E-mail: ept@ept.com.br Rua Marcelo Gama, 41 - Porto Alegre/RS - CEP 90540-040 - Fone: (51) 342-7766 - Fax: (51) 342-7642 - E-mail: eptpoa@aol.com

Geól. Érica Kato Pacheco Ferraz

São Paulo, 24 de agosto de 2006

Rio Grande/RS

OBRA

LOCAL

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples reconhecimento dos solos

NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia FOLHA N.º 3/4 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A ESCALA 1:100 TRAB. N.º 064/2006-04

COTA PERFIL INTER. PROFUN. GEOLÓ_ GEOLÓ_ GEOLÓ_ CAMADA (m) GICO GICA (m) DESCRIÇÃO DO MATERIAL COMPA_ CIDADE* TORQUE Kgf.m COMPA_ MAX. RES. TORQUE Kgf.m AMOSTRADC OU COMPA_ MAX. RES. TORQUE Kgf.m AMOSTRADC OU COMPA_ TABLESTÉNC OU	IA A PENETRAÇÃO OR TIPO TERZAGHI IOLPES / 30 cm. (m)
(m) GICO GICA (m) COMPA_ CIDADE MAX. RES. N.*DE G S. P. T. N.*DE G 35 30 25 ####################################	OLPES / 30 cm. (m)
3 1 $\frac{2}{24} \frac{1}{9} \frac{2}{12}$	5 20 15 10 5
	3/ 21
$\begin{array}{c} \mathbf{z} \\ $	5/31
-29,95	5/29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5/31
$5 3 \frac{2}{19} \frac{2}{15} \frac{2}{11}$	4/ 26
MEDIA [*] 7 5 $\frac{2}{15}$ $\frac{3}{15}$ $\frac{3}{19}$ $\frac{3}{14}$	6/ 33
$MOLE^{-} 7 4 \frac{2}{15} \frac{2}{15} \frac{3}{15}$	5
-34.95 SM plástica, cinza escuro 8 5 2 3 3 15 18 14	6/ 32 ¦
7 4 2 3 3	6
5 3 $\frac{2}{15}$ $\frac{3}{15}$ $\frac{4}{15}$ 17	7/ 32
T 4 3 3 3 MEDIA* 7 4 3 18 14 13	6/ 27
8 5 3 3 3 3 3 7 13 15	6/ 28
-39.95	6/ 27
7 4 3 3 4 16 12 15	7/27
Leitura Data/Hora N.A.(m) Método Inicio(m) Eim(m) Lavarem por tempo - 10 min OBS	
Image: Constraint of the state of	a 23,00m=Amostras lavadas - 42,0 chas, preta

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

P Geól. Érica Kato Pacheco Ferraz lerroz U

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial

Rio Grande/RS

OBRA

LOCAL

SONDAGEM

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples

reconhecimento dos solos NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia FOLHA N.° 4/4 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A ESCALA 1:100 TRAB. N.º 064/2006-04 SP.01 COTA 1,050 DATA DE INÍCIO 16/08/2006 COORD. N 6.445.155,42 RE N.°

						TERMING) 19/0	8/2006		E	395.959,20	j j					
СОТА	PERFIL	INTER.	PROFUN					CONSIS_ TÊNCIA*	TOF		NUMERO DE	RESIST	ÊNCIA	A PEN	IETRA	ÇÃO	N. A.
(m)	GEOLÓ_ GICO	GEOLÓ_ GICA	CAMADA (m)	DESCRI	ÇÃO DO I	MATERIA	AL	OU COMPA_	MAX.	RES.	GOLPES	AMOST N.°	DE GO	LPES /	TERZ/ 30 cm	AGHI 5	(m)
-	# # # # # # # # # # #	SM	44,15	Argila p plástica	oouco sili a, cinza e	tosa, scuro		MEDIA*	9 7	5	$\frac{3}{16} \frac{4}{15} \frac{4}{13} \\ \frac{3}{15} \frac{4}{17} \frac{4}{13} \\ 3 10 13 \\ \end{array}$		23	8	28		
-44,95	 = = = = = =		45,00 46,30	Aria fin cinza e Areia fi claro	a, pouco scuro na, siltos	argiiosa a, cinza	,	COMP.** MUITO COMP.**	33 34	14 18 18	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 59/ 23 42/ 15					
	Date(file					Ein/m					OBS -						
Leitura 1 2	Data/Ho	ora N./ 	4.(m) T T	Método . Cavadeira . Espiral	lnicio(m) 0,00 	Fim(m)	Lavag Profu Estag	em por t n. de Inic io 1 (cm)	empo - io (m) : 	10 min. 	OBS. : SM=Sedimento 44,15m=Com f	Marinho - 3 ragmentos	21,40 a 2 de concha	3,00m=/ as, preta	Amostra: a	3 lavada	as - 42,00
3	,		L	avagem	14,70	46,30	30 Estagio 3 (cm) :										

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicalerroz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial

CRI	-0027	-	Ρ		011)6991-5032									
CONTRA	TANTE	Server	na - Civ	ilsan S.A. Empresas Asso	ciada	s de En	aenha	ria			FOLH	N.º 1	/4	
OBRA		Prolor	ngamen	to do Cais - Berco III do To	ermin	al TECC	DN Ric	Gran	de S/A		ESCAL	A 1	: 100	
		Rio Gr	ande/R	S							TRAB	N° 0	64/2006	5-04
SONDAG	ÈΕΜ	SP.02	сот	A 1,350 DATA DE INÍCI TÉRMIN	0 10/(0 16/()8/2006)8/2006	coc	DRD. N E	6.445.205, 395.961,52	37 2	RE N.			
COTA	PERFIL	INTER.	PROFUN.			CONSIS_	TOR	QUE	NUMERO	RESI	STÊNCI		NETRAÇÃ	0
	GEOLÓ_	GEOLÓ_	CAMADA	DESCRIÇÃO DO MATERI	AL	OU	kg	f.m		AMOS	STRADO	r tipo	TERZAG	N. A. HI
(m)	GICO	GICA	(m)			COMPA_ CIDADE**	MAX.	RES.	S. P. T.	N 35	.° DE GC 30 25	LPES / 20 1	/ 30 cm. 5 10 5	(m)
0,35			1,03	Vão da balsa		-						-		ľ
-4,65			11,12	Lâmina d'água Araila muito siltosa, cin	72	MUTO	1	1	<u>•</u>				0/ 5	13
]	12,00	escuro		MOLE*								7
-	= = = = = = = = =	SM	13,85	Areia fina, siltosa, cinza Argila arenosa (areia fin	a),	COMP.** MUITO COMP.** DURA*	4 14	3 11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	19/29			/
Leitura	Data/He	ora N.	A.(m)	Método Inicio(m) Fim(m)	Lavag	em por t	empo -	10 min.	OBS. :					
1 2 3	 		T. T. Li	. Cavadeira 0,00 . Espiral avagem 11,45 46,28	Profu Estag Estag Estag	n. de Iníc io 1 (cm) io 2 (cm) io 3 (cm)	io (m) : : :	,	SM=Sedimento	o warinho				
ΝΟΤΑ		NTE ·						:	São Paulo	, 24 o	de ago	osto d	de 200	6

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

Geól. Érica Kato Pacheco Ferraz

U

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

OBRA

LOCAL

SONDAGEM

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples

reconhecimento dos solos NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia FOLHA N.° 2 / 4 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A ESCALA 1:100 TRAB. N.º 064/2006-04 **Rio Grande/RS** DATA DE INÍCIO 10/08/2006 COORD. N 6.445.205,37 SP.02 COTA 1,350 RE N.° TÉRMINO 16/08/2006 E 395.961,52

СОТА	PERFIL	INTER.	PROFUN	UN. T ADA DESCRIÇÃO DO MATERIAL	CONSIS_ TÊNCIA*	TOF kg	QUE f.m	NUMERO DE	RESISTÊNCIA A PENETRAÇÃO	N. A.
(m)	GEOLO_ GICO	GICA	(m)	DESCRIÇÃO DO MATERIAL	COMPA_ CIDADE**	MAX.	RES.	GOLPES	N.°DE GOLPES / 30 cm. 35 30 25 20 15 10 5	(m)
-14,65			10.15	Argila arenosa (areia fina), cinza	MOLE*	11 4	3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/3	
	= = =		10,10		RIJA* MEDIA. COMP.**	4	3	$\frac{3}{22}$ $\frac{5}{8}$ $\frac{8}{15}$	13/23	
				Areia fina, siltosa, cinza	POUCO COMP.**	4	3	$\frac{2}{21}$ $\frac{2}{10}$ $\frac{3}{15}$	5/ 25,	
					MEDIA. COMP.**	4	3	$\frac{5}{15}$ $\frac{7}{15}$ $\frac{10}{15}$	17	
	77/7/		19,25	Argila muito siltosa, com	COMP.** DURA*	20	14	9 <u>15</u> <u>22</u> 15 <u>15</u> <u>15</u>		
-19,65	+/+/+ +/+/-		21.00	fragmentos de conchas, cinza		7	3	$ \begin{array}{c} 2 \\ 23 \\ 8 \\ 8 \\ 17 \end{array} $		
		SM		Araila siltosa nouco	MOLE*	7	4	$\frac{2}{15}$ $\frac{2}{15}$ $\frac{2}{17}$	4/ 32	
	 = - - -			arenosa (areia fina), cinza		8	5	$\frac{2}{21}$ $\frac{2}{14}$ $\frac{3}{14}$	5/28	
	 - 		24,00	escuro	MEDIA*	7	4	$\frac{2}{19}$ $\frac{3}{11}$ $\frac{4}{17}$	7/ 28	
_	 			Argila muito siltosa, com		4	3	$\frac{2}{20}$ $\frac{2}{15}$ $\frac{2}{10}$	4/25	
-24,65				fragmentos de conchas,		11	3	$\frac{2}{20}$ $\frac{2}{14}$ $\frac{2}{11}$	4/ 25	
_			27,00		MOLE*	11	3	$\frac{2}{20}$ $\frac{2}{15}$ $\frac{2}{14}$	4/29	
-				Argila pouco siltosa, plástica, cinza escuro		4	3	$\frac{2}{21}$ $\frac{1}{9}$ $\frac{2}{17}$	3/ 28	
Leitura 1 2 3	a Data/Ho 	ora N./ 	A.(m) T T L	Método Inicio(m) Fim(m) Lava Cavadeira 0,00 Profu Espiral -,, Esta avagem 11,45 46,28 Esta	gem por t n. de Inic jio 1 (cm) jio 2 (cm) jio 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sedimento	1 I I I I I I I I I	

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicalerroz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

Rio Grande/RS

OBRA

LOCAL

SONDAGEM

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples

reconhecimento dos solos NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia FOLHA N.º 3 / 4 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A ESCALA 1:100 TRAB. N.º 064/2006-04 SP.02 COTA 1,350 DATA DE INÍCIO 10/08/2006 COORD. N 6.445.205,37 RE N.°

				TÉRMINO '	16/08/2006	E	395.961,5	2			
СОТА	PERFIL	INTER.	PROFUN.		CONSIS_ TÊNCIA*	TOF		NUMERO	RESISTÊNCIA A P	ENETRAÇÃO	N. A.
()	GEOLÓ_	GEOLÓ_	CAMADA	DESCRIÇÃO DO MATERIAL	OU	ĸg		GOLPES	AMOSTRADOR TIP	O TERZAGHI	
(m)	GICO	GICA	(m)		CIDADE*	MAX.	RES.	S. P. T.	35 30 25 20	15 10 5	(m)
-						4 5	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3/ 26 4/ 31	
-29,65	╘┤≠/╤ ╵┲╵╤╵╤ ╘┤╤/╤				MOLE*	5	3	$\frac{2}{19} \frac{2}{15} \frac{2}{11}$		4/ 26	
						5	4	$\frac{2}{19}$ $\frac{2}{15}$ $\frac{2}{15}$		4	
-						4	3	$\frac{2}{18}$ $\frac{2}{13}$ $\frac{3}{17}$		5	
	╞ ╡ _┲ ╶╤╶╤				MEDIA*	7	4	$\frac{2}{17}$ $\frac{3}{14}$ $\frac{3}{15}$		6/ 29	
-				Argila pouco siltosa,		5	4	2 2 3 18 14 16		5	
-34,65		SM		plástica, cinza escuro	MOLE	7	4	2 <u>3</u> 2 15 19 11		5	
						5	4	$\frac{2}{15}$ $\frac{3}{18}$ $\frac{3}{14}$		6/ 32	
-						5	4	2 <u>3</u> <u>3</u> 15 18 14		6/ 32	
-						5	4	$\frac{3}{18} \frac{2}{12} \frac{4}{17}$		6/ 29	
-					MEDIA*	14	7	$\frac{3}{17} \frac{3}{14} \frac{4}{15}$		7/29	
-39,65						8	4	3 2 4 19 11 17		6/ 28	
_			42,00			14	7	$\frac{3}{16}$ $\frac{4}{14}$ $\frac{4}{15}$		8/29	
Leitura	⊥ <i>/=/ ≠/ →</i> a Data/Ho	ora N./	A.(m)	Método Inicio(m) Fim(m)	avagem por t	empo -	10 min.	OBS. :			L
1 2 3			T.	Cavadeira 0,00 Espiral E	rofun. de Inic stagio 1 (cm) stagio 2 (cm)	io (m) : : :	,	SM=Sedimento	o Marinho		
				11,70 70,20 E	stagio 3 (cm)	:					

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicalerroz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

Rio Grande/RS

SP.02 COTA 1,350

OBRA

LOCAL

SONDAGEM

RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples

reconhecimento dos solos NBR 6484/2001

CONTRATANTE Serveng - Civilsan S.A. Empresas Associadas de Engenharia FOLHA N.° 4 / 4 ESCALA 1:100 Prolongamento do Cais - Berço III do Terminal TECON Rio Grande S/A TRAB. N.º 064/2006-04 DATA DE INÍCIO 10/08/2006 COORD. N 6.445.205,37 RE N.° TÉRMINO 16/08/2006 E 395.961,52

СОТА	PERFIL	INTER.			CONSIS_ TÊNCIA*	TOF kg	RQUE If.m	NUMERO DE	RESISTÊ	NCIA A PENETRAÇ	AO N. A
(m)	GEOLO_ GICO	GICA	(m)	DESCRIÇÃO DO MATERIAL	COMPA_ CIDADE*	MAX.	RES.	GOLPES	N.° DE 35 30	GOLPES / 30 cm. 25 20 15 10	5 (m)
				Argila pouco siltosa, com		9	4	$\frac{3}{17}$ $\frac{3}{13}$ $\frac{4}{15}$		7/ 28	
-			44.00	fragmentos de conchas, plástica, preto	MEDIA*	7	4	3 3 3 18 12 15		6/ 27	
-	7////	SM	44,00	Argila muito arenosa (areia fina), cinza escuro	RIJA* MEDIA.	18	5	5 7 9 15 15 15		16	
-	 = = =			Areia fina, siltosa, cinza	MUITO	35	19	$\frac{28}{15}$ $\frac{40}{11}$	40/11		
-44,65			46,28	claro	COMP.**	34	20	<u>20</u> <u>41</u> 15 13	41/ 13		
Leitura	Data/Ho	ora N./ 	A.(m) T T L	Método Inicio(m) Fim(m) Lava Cavadeira 0,00 Prof Esta Avagem 11,45 46,28 Esta	igem por t un. de Inic gio 1 (cm) gio 2 (cm) gio 3 (cm)	empo - io (m) : :	10 min. 	SM=Sedimento	Marinho		

NOTA IMPORTANTE :

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006 leuicalerroz

Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CR	L-0027	RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de reconhecimento dos NBR 6484/2001 Serveng - Civilsan S.A. Empresas Associadas de Engenharia													6991-5032 ETRO			
CONTRA	ATANTE	Server	ng - Ci	vilsan S.A.	Empresa	s Asso	ciada	s de Ei	ngenh	aria			F	OLHA	N.º 1	/4		
OBRA		Prolor	igame	nto do Cai	s - Berço	lll do Te	ermin	al TEC	ON Ri	o Gra	nde S/A		E	ESCALA	1	: 10	0	
LOCAL		Rio Gr	ande/	RS									1	FRAB. N	I.° C	64/2	006-0)4
SONDAG	GEM	SP.03	CO	ta 1,220	DATA	DE INÍCIO TÉRMINO	07/0 10/0	8/2006 8/2006	coc	ORD. N E	6.445.255 395.963,7	,32 8	F	RE N.°				
сота	PERFIL	INTER.	PROFU	ı.				CONSIS_ TÊNCIA*	TOR	QUE	NUMERO	RE	SIST	ÊNCIA	A PE	NETR	AÇÃO	ΝΔ
	GEOLÓ_	GEOLÓ_	CAMAD	DESCR	DESCRIÇÃO DO MATERIAL		OU	kg	f.m	GOLPES	AM	OST		TIPC	TER2	ZAGHI		
(m)	GICO	GICA	(m)					COMPA_ CIDADE**	MAX.	RES.	S. P. T.	35	N.ºI	25 2	0 15	5 10	n. 5	(m)
0,22			1,03	Vão d	a Balsa													
-4,78 - -9,78 - - -9,78				Lâmin	a d'água													
Leitura 1	a Data/H 	ora N. 	A.(m) 	Método . Cavadeira	Inicio(m) 0,00	Fim(m)	Lavag Profu	em por t n. de Inic	empo - io (m) :	10 min. 	OBS. : SM=Sediment	o Mari	inho - 4.45m	18,00 a	9,70m	n=Com f	ragmen	tos de
2 3				. Espiral avagem	 16,55				55 a 4-	.,+5/1	-, 11103[11	avdu						

Os resultados deste ensaio têm

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicaferraz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CRL	-0027	RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de reconhecimento dos NBR 6484/2001 FOLHA N.° 2 / 4													
CONTRA	TANTE	Server	ng - Ci	ivilsan S.A. Empresas Asso	ociada	s de Er	ngenh	aria			FOLI	HA N.°	2/4		
OBRA		Prolon	igame	nto do Cais - Berço III do T	ermin	al TEC	ON Ri	o Grai	nde S/A		ESC	ALA -	1:100		
LOCAL		Rio Gr	ande/	RS							TRA	B. N.° ()64/200	6-04	
SONDAG	ΕM	SP.03	СС	DTA 1,220 DATA DE INÍCH TÉRMINO	0 07/0 0 10/0	8/2006 8/2006	COC	DRD. N E	6.445.255, 395.963,78	32 3	RE N	l.°			
СОТА	PERFIL	INTER.	PROFU	N.		CONSIS_ TÊNCIA*	TOR	QUE	NUMERO	RESIS	STÊNC	CIA A PE	NETRAÇÂ	ă0	N. A.
	GEOLÓ_	GEOLÓ_	CAMAD	A DESCRIÇÃO DO MATERIA	AL	ou	kg	f.m	GOLPES	AMOS	TRAD	OR TIP) TERZAG	iHI	
(m)	GICO	GICA	(m)		COMPA_ CIDADE**	MAX.	RES.	S. P. T.	N. 35 3	° DE C 30 25	5 20 1	/ 30 cm. 5 10 5		(m)	
_			15,40	Lâmina d'água											
-14,78	<i> </i> =/=/=			Argila pouco siltosa, cin	iza	мито			0				0/1	15	
	<i>= = = </i>		16,55	escuro e preto		MOLE*	1	1	115						
_	= = =					FOFA**			5 0 0						
	= = =					MEDIA.	3	3	<u>5 9 8</u> 15 15 15			17		$\left \right $	
-	= = =			Areia fina, siltosa, cinza			_		3 9 13		2/20				
				escuro		COMP.**	5	4	16 14 15	-	1	4			
-						FOFA**	7	4	2 2 2				4/35		
	1111		19,70				'	-	15 21 14						
						MOLE*	7	3	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$				3/ 32	;	
-19,78									21 9 23					/	
						MEDIA*	9	1	17 18 10				5/28		
-		SM		Argila arenosa (areia fina	a),				1 2 2						
				cinza escuro			7	3	20 15 15						
-							7	3	1 2 2				4		
_									15 20 10						
			24.90				14	1	$\frac{2}{17}$ $\frac{2}{16}$ $\frac{3}{17}$				5/ 33		
_	<i>_</i>		24,00						1 2 1						
-24 78	<i>╡</i> /≠/ /			Argila muito siltosa, cina	za	WICEL	3	1	15 23 7						
24,70	<i>≠ </i> +/+			escuro			2		2 1 2				3/ 25		
	<i>= = = </i>		27.00				э		20 10 15						
	<i>F/</i> 7 / 7		,	Argila pouco siltosa. cin	iza		4	3	$\frac{2}{10}$ $\frac{2}{15}$ $\frac{2}{10}$				4/ 28		
-	<i>╡<u></u>╪/╡</i>			escuro					19 15 13						
Leitura	/ <u>→</u> / → / → / → / →	ora N.	A.(m)	Método Inicio(m) Fim(m)	Lavag	em por te	empo - '	10 min.	OBS. :						
1			-	T. Cavadeira 0,00 T. Espiral	Profu Estagi	n. de Inic o 1 (cm)	io (m) : :		SM=Sedimento conchas - 44,0	0 Marinho 0 a 44,45	- 18,0 m=Am	0 a 19,70n ostra lavad	n=Com fragr da	nento	s de
3				Lavagem 16,55 47,34	Estagi Estagi	:									

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

Ceól. Érica Kato Pacheco Ferraz

São Paulo, 24 de agosto de 2006

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CR	L-0027	-		RELA SONDA Execuç recc	ATÓF AGEI ão de onhe NBR	RIO D M A F e son cime 6484	EEN PERC dage nto d	ISAI CUSS Ins d os	O SÃO e		PROJESOFT (011)	6991-5032
CONTR	ATANTE	Server	ng - Ci	vilsan S.A. Empresas Asso	ciada	s de Ei	ngenh	aria		FOLHA N	l.° 3 / 4	
OBRA		Prolor	igame	nto do Cais - Berço III do Te	ermin	al TEC	ON Ri	o Gra	nde S/A	ESCALA	1:100	
LOCAL		Rio Gr	ande/	RS						TRAB. N.	° 064/2006-0	04
SONDA	GEM	SP.03	CC	TA 1,220 DATA DE INÍCIO TÉRMINO	0 07/0 0 10/0	8/2006 8/2006	coo	DRD. N E	6.445.255 395.963,7	,32 RE N.° 8		
COTA	PERFIL	INTER.	PROFU	a.		CONSIS_	TOF	QUE	NUMERO	RESISTÊNCIA A	A PENETRAÇÃO	N A
	GEOLÓ_	GEOLÓ_	CAMAD	A DESCRIÇÃO DO MATERIA	AL	OU	kg	f.m	DE GOLPES	AMOSTRADOR	TIPO TERZAGHI	N. A.
(m)	GICO	GICA	(m)			COMPA_ CIDADE**	MAX.	RES.	S. P. T.	N.° DE GOLI 35 30 25 20	PES/30 cm.) 15 10 5	(m)
	#/#/# #/#/#						4	3	$\frac{2}{21}$ $\frac{2}{9}$ $\frac{2}{15}$		4/ 24	
	≠/∓/= =/≠/∓			Argila pouco siltosa, cin: escuro	za	MOLE*	5	3	$\frac{2}{17}$ $\frac{2}{13}$ $\frac{3}{15}$		5/ 28	
-29,78	+/+/+ +/+/+		31,00			more	7	3	$\frac{2}{16}$ $\frac{2}{15}$ $\frac{3}{16}$		5/ 31	
	+/+/= +/+/+						5	3	$\frac{2}{17}$ $\frac{2}{13}$ $\frac{3}{15}$		5/ 28	
_	= = = = = =						12	8	$\frac{3}{19} \frac{2}{11} \frac{4}{17}$		6/ 28	
_	≠/ + /= =/=/=/						4	3	$\frac{2}{15} \frac{3}{17} \frac{3}{13}$		6	
_	+/+/+ +/+/+						3	1	$\frac{2}{15}$ $\frac{3}{17}$ $\frac{3}{13}$		6	
-34,78	, ≠ / ≠ /= ,=,3;€,8;₹	SM					7	3	$\frac{3}{19}$ $\frac{3}{14}$ $\frac{3}{12}$		6/ 26	
-	\			Argila pouco siltosa, plástica, cinza escuro			7	3	$\frac{2}{15}$ $\frac{3}{15}$ $\frac{4}{18}$		7/ 33	
-	#/ #/ # #/ #/ #/					MEDIA*	5	3	$\frac{3}{19} \frac{3}{11} \frac{4}{17}$		7/28	
-	# # # # # #						14	4	$\frac{2}{15}$ $\frac{3}{16}$ $\frac{4}{16}$		7/32	
_	(#/7/ =/7/7/						9	7	$\frac{2}{15}$ $\frac{3}{16}$ $\frac{3}{15}$		6/ 31	
-39,78	\ <i>#\</i> #\# \						14	4	3 3 4 3 3 4		7/29	
-	\ =						11	4	18 13 15		// ¥8	
Leitur 1 2 3	<u>r ≠/ ₹/</u> 5 a Data/H 	ora N. 	A.(m) 	⊥ Método Inicio(m) Fim(m) F. Cavadeira 0,00 F. Espiral .avagem 16,55 47,34	Lavag Profu Estagi Estagi Estagi	em por t 1. de Inic io 1 (cm) io 2 (cm) io 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sedimente conchas - 44,0	0 Marinho - 18,00 a 19 00 a 44,45m=Amostra	9,70m=Com fragmer lavada	I ntos de

Os resultados deste ensaio têm

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

Geól. Érica Kato Pacheco Ferraz

São Paulo, 24 de agosto de 2006

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcia

CR	L-0027	-		RELAT SONDAC Execução recor NI	ÓRIO D GEM A F de son hecime BR 6484	PERC dage nto d	ISAI CUSS Ins d los	O SÃO e		PROJESOFT	011)6991-5032
CONTRA	ATANTE	Server	ng - C	ivilsan S.A. Empresas Associa	adas de E	ngenh	aria			FOLHA N.° 4 / 4	
OBRA		Prolon	igame	ento do Cais - Berço III do Teri	minal TEC	ON Ri	o Gra	nde S/A		ESCALA 1:100	
LOCAL		Rio Gr	ande	RS						TRAB. N.° 064/20	06-04
SONDAG	GEM	SP.03	CO	DTA 1,220 DATA DE INÍCIO (TÉRMINO	07/08/2006 10/08/2006		DRD. N E	6.445.255 395.963,7	,32 B	RE N.°	
COTA	PERFIL	INTER.	PROFU	N	CONSIS_	TOF	QUE	NUMERO	RESIS	STÊNCIA A PENETRAÇ	ÇÃO N A
	GEOLÓ_	GEOLÓ_	CAMA	DESCRIÇÃO DO MATERIAL	OU	kg	f.m	DE	AMOS	TRADOR TIPO TERZA	GHI
(m)	GICO	GICA	(m)		COMPA_ CIDADE*	МАХ.	RES.	S. P.	N.º 35-3	° DE GOLPES/30 cm. 30 25 20 15 10 5	5 (m)
	<i> </i> ≠/∓/	-		Argila pouco siltosa,		7	3	3 3 4		7/ 26	
-	<i>\</i>	1	12.20	plástica, cinza escuro	MEDIA*			19 14 12			
	////		40,00	Areia fina a média, pouco	POUCO COMP.**	18	4	3 3 3 18 15 13		6/28	
-		x	44,00	argilosa, marrom escuro Areia fina, com fragmentos	MEDIA.	18	3	6 5 12		17	
		SM	45,00	de concha, cinza escuro	COMP.**			15 15 15			
	/=/=/=		45.00	Argila siltosa, plástica, cina	za _{RIJA*}	16	7	$\frac{5}{15}$ $\frac{4}{15}$ $\frac{9}{15}$		13	
-44,78	= = =		45,80		MEDIA.	10	16	<u>30</u> <u>48</u>	48/ 1	5 /	
	= = =			Areia media a fina, siltosa,	MUITO	19	10	15 15			
-	= = =		47,34	cinza ciaro	COMP.**	27	20	$\frac{23}{45}$ $\frac{34}{45}$ $\frac{30}{45}$	64/ 1	9	
Leitura 1 2 3	Data/Ho	ora N. 	A.(m) 	Método Inicio(m) Fim(m) L T. Cavadeira 0,00 E T. Espiral E Lavagem 16,55 47,34 E	avagem por t rofun. de Inic stagio 1 (cm) stagio 2 (cm) stagio 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sedimente conchas - 44,0	0 Marinho 10 a 44,45	- 18,00 a 19,70m=Com fra m=Amostra lavada	gmentos de

significação restrita e se aplicam tão somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicaferraz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CRL	-0027	-			RELAT SONDA(Execução recoi N	GEM A P GEM A P o de sono nhecime BR 6484	EENC dage nto d	ISAI CUSS ns d os 1	O SÃO e				PROJESOF	ET (011)E	991-5032 ETRO
CONTRA	TANTE	Server	ng - Civ	ilsan S.A. E	Empresas Associ	iadas de Er	ngenh	aria			FOL	HA N.º	1/4		
OBRA		Prolor	igamen	to do Cais	- Berço III do Ter	minal TEC	ON Rie	o Grai	nde S/A		ESC	ALA	1 : 10	D	
LOCAL		Rio Gr	ande/R	s							TRA	B. N.°	064/20	006-0	4
SONDAG	EM	SP.04	СОТ	A 1,080	DATA DE INÍCIO TÉRMINO	02/08/2006 05/08/2006	COC	DRD. N E	6.445.305, 395.966,03	27 3	REN	۹.°			
СОТА	PERFIL	INTER.	PROFUN.			CONSIS_ TÊNCIA*	TOR	QUE	NUMERO	RES	ISTÊN	CIA A PI	ENETRA	ÇÃO	N. A.
	GEOLÓ_	GEOLÓ_	CAMADA	DESCRIÇ	ÃO DO MATERIAL	ou	kg	f.m	GOLPES	AMO			O TERZ	AGHI	
(m)	GICO	GICA	(m)			CIDADE**	MAX.	RES.	S. P. T.	35	30 2	5 20 1	5 10	5	(m)
0,08			1,03	Vão da	Balsa										
-4,92 - -9,92 - - - - - - - - - - - - - - - - - - -				Lâmina	d'água										
Leitura 1 2 3	Data/He 	ora N. 	A.(m) T. T. La	Método I Cavadeira Espiral avagem	nicio(m) Fim(m) L 0,00 F 	avagem por te Profun. de Inic Estagio 1 (cm) Estagio 2 (cm) Estagio 3 (cm)	empo - 1 io (m) : - : :	10 min. 	OBS. : SM=Sedimento 47,30m=Amost	o Marinh tras lava	no - 42,0 adas - 45	0 a 44,00 5,45m=To	m=Preta rque > 50	- 46,00 Kgf.m	a

Os resultados deste ensaio têm significação restrita e se aplicam tão somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicaferraz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CRI	-0027	-		RELA SOND/ Execuç reci	ATÓRIO I AGEM A ão de sol onhecime NBR 648	DE EI PERC ndage ento c 4/200	NSAI CUSS ens d los)1	O SÃO e				PROJE	SOFT (01	1)6991-5032 METRO
CONTRA	TANTE	Server	ng - Ci	vilsan S.A. Empresas Asso	ciadas de l	Engenh	naria			FO	LHA N.	° 2 / 4	Ļ	
OBRA		Prolon	ngame	nto do Cais - Berço III do T	erminal TE	CON Ri	io Gra	nde S/A		ES	CALA	1:1	00	
LOCAL		Rio Gr	ande/	rs						TR	AB. N.°	064	/2006	-04
SONDAG	βEM	SP.04	CO	TA 1,080 DATA DE INÍCIO TÉRMINO	0 02/08/200 0 05/08/200	6 CO 6	ORD. N E	6.445.305 395.966,0	,27 3	RE	N.°			
СОТА	PERFIL	INTER.	PROFU		CONSIS	ТОГ	RQUE	NUMERO	RE	SISTÊI	ICIA A	PENET	RAÇÃ	0
	GEOLÓ_	GEOLÓ_	CAMAD	DESCRIÇÃO DO MATERIA	AL OU	kg	yf.m	GOLPES	AMO	OSTRA	DOR T	IPO TE	RZAGI	1
(m)	GICO	GICA	(m)		COMPA	- MAX.	RES.	S. P. T.	35	30 2	GOLP	15 1	cm. 0 5	(m)
-14,92				Lâmina d'água										
-			17,43 17,72 19,20	Argila pouco siltosa, plástica, cinza escuro Areia fina, siltosa, com fragmentos de conchas, cinza escuro	FOFA*	1 · 4	1 3 3	$\begin{array}{c} 0\\ \hline 39\\ 2\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$			21		0/ 3 4	9
- <u>19,92</u> -		SM	24,00	Argila muito arenosa (ar fina), com fragmentos de conchas, cinza escuro	eia e Mole	8 5 4 4	4 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4) 36 2/ 25 3/ 32 4	
_				Argila siltosa, com pouc areia fina, cinza escuro		4	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4/	2 27	>
-24,92	≠/≠/ 7 ≠/∓/		26,00	Argila pouco siltosa,	MOLE	5	4	$\frac{2}{2}$ $\frac{1}{2}$ $\frac{2}{15}$				3	(24	
-				plástica, com fragmento de concha esparsos, cin escuro	S MUITO MOLE*	5	3	$\frac{1}{18} \frac{1}{15} \frac{1}{13}$					2/ 28	Ì
Leitura 1 2 3	a Data/Ho 	ora N. 	A.(m) I	Método Inicio(m) Fim(m) Cavadeira 0,00 Espiral avagem 17,72 47,30	Lavagem por Profun. de In Estagio 1 (cr Estagio 2 (cr Estagio 3 (cr	tempo - icio (m) : 1) : 1) : 1) :	10 min. 	OBS. : SM=Sediment 47,30m=Amos	o Marir stras lav	nho - 42 vadas - 4	00 a 44, 45,45m=	00m=Pre Torque >	eta - 46, • 50 Kgf)0 a m

Os resultados deste ensaio têm

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

Cluicaforaz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial

CR	L-0027	-			SC Ex	RELA ONDA ecuçá reco	AGEI AGEI ão de onhe NBR	RIO D M A F e son cime 6484	EEN PERC dage nto d	NSAI CUSS Ins di Ios	O SÃO e			PR	DJESOFT (0	11)6991 ME	1-5032
CONTRA	ATANTE	Server	ng - C	vilsan S.A	. Empresas	s Asso	ciada	s de Ei	ngenh	aria			FOLHA	N.° 3	/ 4		
OBRA		Prolon	igame	nto do Cai	s - Berço I	ll do Te	ermin	al TEC	ON Ri	o Grai	nde S/A		ESCAL	A 1	: 100		
LOCAL		Rio Gr	ande/	RS									TRAB.	N.° 0	64/2006	6-04	
SONDA	GEM	SP.04	CC	TA 1,080	DATA I T	DE INÍCIO FÉRMINO	02/0 05/0	8/2006 8/2006	COC	DRD. N E	6.445.305 395.966,0	,27 3	RE N.º	•			
0074	PERFIL	INTER.	PROFU	N.				CONSIS_	TOF	QUE	NUMERO	RES	ISTÊNCIA		ETRAÇÂ	0	
	GEOLÓ_	GEOLÓ_	CAMAD	A DESCI	RIÇÃO DO M	ATERIA	AL.	OU	kg	f.m	DE GOLPES	AMO	STRADO	R TIPO	TERZAG	HI	N. A.
(m)	GICO	GICA	(m)					COMPA_ CIDADE**	MAX.	RES.	S. P. T.	N 35	1.° DE GC 30 25	20 15	30 cm. 10 5		(m)
	#/#/= =/#/#								4	3	$\frac{2}{15}$ $\frac{2}{15}$ $\frac{3}{17}$				5/ 32		
_	# # # #							MOLE*	4	3	$\frac{2}{20}$ $\frac{1}{12}$ $\frac{2}{15}$				3/ 27)	
-29,92	+/+/+ +/+/+								5	4	$\frac{2}{18}$ $\frac{2}{14}$ $\frac{3}{16}$				5		
_	# 7 = 7 7								7	4	$\frac{2}{16}$ $\frac{2}{14}$ $\frac{3}{15}$				5/29		
_	#/#/# #/#/#							MEDIA*	5	3	$\frac{2}{15}$ $\frac{3}{17}$ $\frac{3}{15}$				6/ 32		
-									8	5	$\frac{2}{15}$ $\frac{3}{20}$ $\frac{2}{13}$				5/38		
				Argila	a pouco silto	osa,		MOLE*	7	4	20 11 15				3/26)	
-34,92		SM		de co	ca, com frag ncha espars	gmento: sos, cin	s za		9	5	$\frac{2}{19}$ $\frac{2}{14}$ $\frac{3}{14}$				5/ 28		
,				escur	0				7	4	$\frac{3}{19} \frac{3}{15} \frac{3}{11}$			6	/ 26		
=									7	4	$\frac{2}{15}$ $\frac{3}{16}$ $\frac{3}{14}$				6		
-									7	4	$\frac{2}{15}$ $\frac{3}{17}$ $\frac{3}{13}$				6		
_	<							MEDIA*	7	4	$\frac{2}{15}$ $\frac{3}{15}$ $\frac{3}{15}$				6		
-39,92									14	8	$\frac{3}{17} \frac{3}{13} \frac{4}{15}$			7	28		
_	\								4	4	$\frac{3}{15} \frac{4}{17} \frac{4}{13}$				8		
Loitur	<u> </u>	ara N	 ۸ (m)	Mótodo	Inicio/m)	Fim/m)	Lavan	em por t	empo -	10 min	OBS. :						
1	a Data/He	ла N. 	(ill)	T. Cavadeira	a 0,00	, iiii(iii)	Profu	n. de Inic	io (m) :		SM=Sediment	o Marinh tras lava	io - 42,00 a idas - 45.4	44,00m= 5m=Toro	Preta - 46 le > 50 Ko	00 a .m	
23				T. Espiral Lavagem	 17,72	47,30	Estag	io 2 (cm) io 3 (cm)									

Os resultados deste ensaio têm

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial

CR	L-0027	-			S	RELA SONDA xecuçá reco	A TÓF AGEI ão de onhe NBR	RIO D M A F e son cime 6484	EEN DERC dage nto d	NSAI CUSS ens d los 01	O SÃO e				PROJESOFT ((011)69 N M E	91-5032 TRO
CONTRA	ATANTE	Serve	ng - C	vilsan S.A	. Empresa	as Asso	ciada	s de E	ngenh	aria			FOL	.HA N.º	4 / 4		
OBRA		Prolor	game	nto do Cai	s - Berço	lll do Te	ermin	al TEC	ON Ri	o Gra	nde S/A		ESC	CALA	1:100		
LOCAL		Rio Gr	ande	RS									TRA	AB. N.°	064/200	6-04	1
SONDAG	GEM	SP.04	C	DTA 1,080	DATA	DE INÍCIO	02/0 05/0	8/2006 8/2006	cod	ORD. N E	6.445.305 395.966,0	5,27)3	RE	N.°			
СОТА	PERFIL	INTER.	PROFL	N.				CONSIS_ TÊNCIA*	TOF	QUE	NUMERO	RE	SISTÊN	CIA A F	PENETRAÇ	ÃO	N. A.
	GEOLÓ_	GEOLÓ	САМА	A DESCF	RIÇÃO DO	MATERIA	AL.	ou	kg	if.m	GOLPES	AMO	OSTRA		PO TERZA	GHI	
(m)	GICO	GICA	(m)					COMPA_ CIDADE*	MAX.	RES.	S. P. T.	35	N.º DE 30 2	GOLPE 5 20	S/30 cm. 15 10 5		(m)
-			44.00	Argila plásti de co escur	i pouco sili ca, com fra ncha espa o	tosa, agmentos rsos, cin:	s za	MEDIA*	8 8	4 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7/ 29 6/ 28		
-		SM	44.80	Argila média	arenosa (a), cinza es	areia fina curo	a	RIJA*	9	4	3 5 8 16 14 15			13/ :	29		
-44,92	= = =		46,00	Areia com f conch	fina a méd ragmentos nas, cinza d	lia, siltos de claro	a,	MEDIA. COMP.** COMP.**			$ \begin{array}{r} 20 \\ $		29			\searrow	
_	= = = = = =			Areia siltos conch	média a gr a, com fraç na, cinza cl	rossa, gmentos aro	de	MUITO COMP.**	34	19	15 8 25 38						
Leitura 1 2 3	a Data/He 	ora N. 	A.(m) 	Método T. Cavadeira T. Espiral Lavagem	Inicio(m) a 0,00 17,72	Fim(m) 47,30	Lavag Profu Estag Estag Estag	em por t n. de Inic io 1 (cm) io 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sedimer 47,30m=Amc	to Marin stras lav	nho - 42, vadas - 4	00 a 44,0 5,45m=T	0m=Preta - 4 orque > 50 K	6,00 a gf.m	

Os resultados deste ensaio têm significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

São Paulo, 24 de agosto de 2006

leuicaturaz Geól. Érica Kató Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

I	RELATÓRIO DE ENSAIO SONDAGEM A PERCUSSÃO Execução de sondagens de simples reconhecimento dos solos	
	NBR 6484/2001	

CONTRA	TANTE	Server	ng - Civ	vilsar	ı S.A.	Empresa	as Asso	ciada	s de Er	ngenh	aria			FC	OLHA N	l.° 1	/ 4		
OBRA		Prolon	gamei	nto de	o Cais	- Berço	III do To	ermin	al TEC	ON Ri	o Gra	nde S/A		ES	SCALA	1	: 100		
LOCAL		Rio Gr	ande/F	RS										TF	RAB. N	.° 06	64/200	06-04	1
SONDAG	iΕM	SP.05	CO.	τα 1 ,	130	DATA	DE INÍCIO TÉRMINO	0 26/0	7/2006 8/2006	COC	DRD. N E	6.445.355 395.958,2	,22 9	R	∃N.°				
сота	PERFIL	INTER.	PROFUN						CONSIS_ TÊNCIA*	TOR	QUE	NUMERO	RE	SISTÊ		A PEN	ETRAÇ	,ÃO	ΝΛ
0014	GEOLÓ_	GEOLÓ_	CAMADA	D	ESCRI	ÇÃO DO I	MATERIA	AL	OU	kg	f.m	GOLPES	AM	OSTR	ADOR	TIPO	TERZA	GHI	N. A.
(m)	GICO	GICA	(m)						COMPA_ CIDADE**	MAX.	RES.	S. P. T.	3	N.°D 5 30	25 2	PES/ 0 15	30 cm. 10	5	(m)
0,13			1.03		Vão da	Balsa													
-4,87 - - -9,87 -					_âmina	ı d'água													
Leitura 1 2 3	Data/H 	ora N. 	A.(m) 1 1 L	Mét . Cav . Esp .avage	odo adeira iral em	Inicio(m) 0,00 <u></u> 17,00	Fim(m) <u></u> 47,15	Lavag Profur Estagi Estagi Estagi	em por te n. de Inic io 1 (cm) io 2 (cm) io 3 (cm)	empo - 1 io (m) : : :	10 min. 	OBS. : SM=Sedimen 47,15m=Amo	to Mari stras la	nho - 42 vadas	2,00 a 44	4,00m=	Preta - 4	6,00 a	
NOTA Os resi	MPORTA	NTE : este ensa	aio têm								:	São Paulo	o, 24	de	agos A	to d	e 200)6	

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CRI	-0027	-		RELA SONDA Execução recor N	TÓRIO D GEM A P de sondagu hecimento IBR 6484	EEN PERC ens de dos s	ISAI USS e simp solos 1	O SÃO oles			PROJESOFT (011)6991-5032
CONTRA	TANTE	Server	ng - Civ	ilsan S.A. Empresas Assoc	iadas de Er	ngenh	aria			FOLHA N	.°2/4	
OBRA		Prolor	ngamen	to do Cais - Berço III do Te	rminal TEC	ON Ri	o Gra	nde S/A		ESCALA	1:100	
LOCAL		Rio Gr	ande/R	S						TRAB. N.	° 064/2006	6-04
SONDAG	ЕM	SP.05	СОТ	A 1,130 DATA DE INÍCIO TÉRMINO	26/07/2006 01/08/2006	COC	DRD. N E	6.445.355, 395.958,2	22 Э	RE N.°		
	DEDEU		PROFUN		CONSIS_	TOF		NUMERO	RES	ISTÊNCIA A		io
COTA	GEOLÓ	GEOLÓ_	CAMADA	DESCRIÇÃO DO MATERIA	TÊNCIA*	kg	f.m	DE	АМО	STRADOR	TIPO TERZAG	N. A.
(m)	GICO	GICA	(m)		COMPA_	MAX.	RES.	SPT	N 35	1.° DE GOLF	PES/30 cm.	(m)
-14,87			17,00	Lâmina d'água								
-			19,50	Argila pouco siltosa, cinz	a MUITO MOLE*	1	1	<u>0</u> 1 <u>β</u> 0 50			0/ 10 0/ 5	i0 i0
-	$\overline{4}$			Argila muito siltosa, com		~		1 1 1			2/ 29	
-19,87	<i>≠/</i> ≠/=			fragmentos de concha,		3		25 13 16				
	<i>╡<i>╪</i>/╡</i>		21,60	cinza escuro		3	1	1 1 1			2	
-		SM	24.00	Areia fina, muito argilosa, cinza escuro	FOFA**	4	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5/ 34 3/ 36	
	<i> </i> _/_/_				MOLE*	1	1	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$			2/ 22	!
-24,87			27.00	Argila muito siltosa, com areia fina, cinza escuro	MUITO MOLE*	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2/ 29 2/ 32	
	7= 7 			Argila, pouco siltosa, plástica, cinza escuro	MOLE*	1	0	$\frac{2}{23}$ $\frac{1}{7}$ $\frac{3}{19}$			4/26	
Leitura 1 2 3	Data/Ho	ora N. 	A.(m) T T L	Método Inicio(m) Fim(m) Cavadeira 0,00 Espiral avagem 17,00 47,15	Lavagem por to Profun. de Inic Estagio 1 (cm) Estagio 2 (cm) Estagio 3 (cm)	empo - io (m) : : :	10 min. 	OBS.: SM=Sedimente 47,15m=Amos	o Marinh tras lava	io - 42,00 a 44 idas	,00m=Preta - 46,	00 a

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

leucaferraz Geól. Érica Kato Pacheco Ferraz

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

CR	-0027	-			E	RELA SONDA xecução reco	ATÓF AGEI o de s onheci NBR	RIO D M A F condag imento 6484	EEN PERC ens d dos s	ISAI CUSS e sim solos 1	O SÃO ples			PROJE	SOFT (011)	6991-5032 ETRO
CONTRA	TANTE	Server	ng - C	ivilsan S	A. Empres	as Asso	ciada	s de Ei	ngenh	aria			FOLHA	. N.º 3 / 4		
OBRA		Prolon	igame	ento do C	ais - Berço	III do To	ermin	al TEC	ON Ri	o Gra	nde S/A		ESCAL	A 1:1	00	
LOCAL		Rio Gr	ande/	RS									TRAB.	N.° 064 /	2006-0	4
SONDAG	BEM	SP.05	CC	DTA 1,130	DATA	A DE INÍCIO TÉRMINO	0 26/0	7/2006 8/2006	cod	DRD. N E	6.445.355 395.958,2	,22 9	RE N.°			
COTA	PERFIL	INTER.	PROFU	N.				CONSIS_	TOR	QUE	NUMERO	RESI	STÊNCIA		RAÇÃO	
	GEOLÓ_	GEOLÓ_	CAMAE	A DES	CRIÇÃO DO	MATERI	AL	OU	kg	f.m	DE GOLPES	AMOS	STRADO	R TIPO TER	RZAGHI	N. A.
(m)	GICO	GICA	(m)					COMPA_ CIDADE*	МАХ.	RES.	S. P. T.	N 35	.° DE GO 30 25	LPES/30 20 15 1	cm. 0 5	(m)
-									5	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	29	
-29,87 								MOLE*	9 5 7	4 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5/	28 5 5	
-34,87		SM		Arg plá:	ila, pouco si stica, cinza e	ltosa, escuro		MEDIA*	5 5 7	3 4 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5/ 2 5/ 2 6/ 3	27	
								MOLE*	4	3	15 15 15				5	
-	╡ _┲ ╵╤╵╤								8	7	$\frac{2}{15} \frac{3}{17} \frac{3}{13}$				6	
-39,87								MEDIA*	11 7 9	7 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7/ 3	6	
-	<i>_/_/_/</i>										.0 .2 .0				X	
Leitura 1 2 3	<u>Y ≠/ ≠ /=</u> a Data/H 	a ora N., 	A.(m) 	Métode T. Cavade T. Espiral Lavagem	o Inicio(m) ira 0,00 17,00	Fim(m)	Lavag Profur Estagi Estagi Estagi	em por t n. de Inic io 1 (cm) io 2 (cm) io 3 (cm)	empo - io (m) : : :	10 min. 	OBS. : SM=Sediment 47,15m=Amos	o Marinho stras Iava	o - 42,00 a das	44,00m=Pre	i <u>N</u> ta - 46,00	a

significação restrita e se aplicam tão somente à(s) amostra(s) ensaiada(s).

A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial.

EPT - ENGENHARIA E PESQUISAS TECNOLÓGICAS S.A. Rua Catão, 523 - Lapa - São Paulo/SP - CEP 05049-000 - PABX: (11) 3873-3399 - Fax: (11) 3672-5411 - E-mail: ept@ept.com.br Rua Marcelo Gama, 41 - Porto Alegre/RS - CEP 90540-040 - Fone: (51) 342-7766 - Fax: (51) 342-7642 - E-mail: eptpoa@aol.com

São Paulo, 24 de agosto de 2006 leuicafuraz Geól. Érica Kato Pacheco Ferraz

C	RL-0027	-			SC Exe	RELA DNDA ecução recor	TÓF GEI de s nheci NBR	RIO D M A F ondag mento 6484	EEN PERC ens d dos s	NSAI CUSS e simp solos 1	O SÃO ples				PF		11)69	91-5032 TRO
CONT	RATANTE	Serve	ng - Civ	/ilsan S.A.	Empresas	s Assoc	ciadas	s de Er	ngenh	aria			F	OLHA I	N.º 4	/ 4		
OBRA		Prolor	ngamer	nto do Cais	s - Berço II	ll do Te	ermina	al TEC	ON Ri	o Grai	nde S/A		E	SCALA	1	: 100		
LOCA	_	Rio Gi	ande/F	rs									т	RAB. N	.° 0	54/2000	6-04	ļ
SOND	AGEM	SP.05	CO.	ΓΑ 1,130	DATA E T	De Inícic Érmino	26/0 01/0	7/2006 8/2006	coo	ORD. N E	6.445.355 395.958,2	5,22 9	F	RE N.°				
	PERFIL	INTER.	PROFUN					CONSIS_	TOF	QUE	NUMERO	RE	SIST	ÊNCIA	A PEN	ETRAÇÃ	0	
	GEOLÓ_	GEOLÓ	CAMADA	DESCR	IÇÃO DO M	ATERIA	L	OU	kg	f.m	DE GOLPES	AN	IOSTR	RADOR	TIPO	TERZAG	ні	N. A.
(m)	GICO	GICA	(m)					COMPA_ CIDADE**	мах.	RES.	S. P. T.	3	N.°E	25 2	PES/	30 cm.		(m)
			44.00	Argila, plástic	, pouco silto ca, cinza eso	osa, curo		MEDIA*	5 5	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7	7 32		
		SM	44,00	Argila fina a escuro	pouco aren média), plás o e preta	osa (are stica, cir	eia nza		4	4	$\frac{2}{17}$ $\frac{3}{15}$ $\frac{3}{13}$					6/ 28		
		2	45,45	Aroia f		duloe		RIJA*	14	9	$\frac{4}{15}$ $\frac{4}{15}$ $\frac{12}{15}$				16			
-44,8	7 / / /	4	46,00	argilos	sos, cinza	Juuios		COMP.**	24	15	27 20	20	/ 4					
	= = =		47.15	Areia f	iina siltosa,	cinza		MUITO COMP.**			15 4 41	41	/ 15					
			47,13						. 16	8	15							
Leitu 1	ıra Data/H 	ora N. ,	A.(m) T	Método . Cavadeira	Inicio(m) F 0,00	⁼ im(m)	Lavag Profur	em por t 1. de Inic	empo - io (m) :	10 min. 	OBS. : SM=Sedimen 47.15m=Amo	to Mar stras I	inho - 4 avadas	12,00 a 4	4,00m=	Preta - 46	00 a	
2			- 1 - 1	. Espiral avagem	17,00	 47,15	Estagi	io 2 (cm) io 3 (cm)	12									

significação restrita e se aplicam tão

somente à(s) amostra(s) ensaiada(s).

Ceól. Érica Kato Pacheco Ferraz A reprodução deste documento dependerá de autorização prévia por escrito, não sendo permitida sua reprodução parcial

EPT - ENGENHARIA E PESQUISAS TECNOLÓGICAS S.A. Rua Catão, 523 - Lapa - São Paulo/SP - CEP 05049-000 - PABX: (11) 3873-3399 - Fax: (11) 3672-5411 - E-mail: ept@ept.com.br Rua Marcelo Gama, 41 - Porto Alegre/RS - CEP 90540-040 - Fone: (51) 342-7766 - Fax: (51) 342-7642 - E-mail: eptpoa@aol.com

São Paulo, 24 de agosto de 2006

B – PLANILHAS DE CÁLCULO DAS ESTIMATIVAS "À PRIORI"

				ESTI	MATIVA [DA CAPAC	IDADE DE	CARGA DE	ESTACAS F	OR METOD	OS SEMI-	EMPIRICOS							
				-							L								
Obra:	TECON - BERÇO II			_								Caracter	risticas das es	itacas					
Sondagem:	SP2										F		Concreto d=8	0cm e=15cm					
Estaca(s):	E61 a E120										٩.	maciça ou er	nbuch. (m ²):	0.50265					
Elevação NA (m):	1.35	NA = Nivel d' água									۲.	nao embuch	ada (m_):	0.30631	Desnecessár	rio se estaca n			
Elevação ND (m):	11.6-	ND = Nivel de drav	reno natural reacem (= NT se não houverd	agagem)							o" J	· (m):		1.57	(Desnecessár	ilo se estaca n			
Elevação NB (m):	-18.00	NB = Nível do topo	o da bucha (desnecessário se	estaca mac								(Aoki & Vello	:(osc	2.00					
Profundidade zero	o corresponde ao f	NA ou ao NT?	NA								E	(Aoki & Vello	:(osc	3.50					
Estaca macica/em	buchada (E) ou năt	o embuchada (NE	I)? NE ID								Re	zão de atrito	int/ext:	9.0	(Desneoessår	rio se estaca n			
	זה בצרחתה מב רופאפ			_															
		Dados gerais	-				Método	de Aoki &	Velloso					Método d	e Decourt 8	& Quaresma			
Profundidade(m)	Elevação (m)	Lent (m)	Tipo de solo/materia	N SFT	K (kPa)	α [%)	Q _{b,u} (kN)	Q _{su} (kN)	Qu (kN)	5[Qu] (kN)	dd	C ₁ (kPa)	C2	°	Qb,u (kN)	Q _{s,u} (kN)	Qu(kN)	f[Q_J] (kN)	dd
0.0	1.35	0.00	Água	0	0	0.0	0.0	0.0	0.0	C.0		0	0.00	0.00	0.0	,	0.0	2	
1.0	0.35	0.00	Agua	0	0	0.0	0.0	0.0	0.0	0.0		0	0.00	0.00	0.0		0.0		•
2:0	-0.69	0.00	Agua	•	0	0.0	0.0	0.0	0.0	0.0			0.00	0.00	0.0		0.0		
3.0	-1.65	0.00	Agua	0 0		0.0	0.0	0.0	0.0	0.0			1.00	1.00	0.0	0.0	0.0	0.0	
5.0	-3.65	0.00	Agua	0	0	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
6.0	-4.65	0.00	Água	0	0	0.0	0.0	0.0	0.0	C.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
7.0	-5.65	0.00	Água	0	0	0.0	0.0	0.0	0.0	C.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
8.0	-6.65	0.00	Água	0	0	C.0	0.0	0.0	0.0	C.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
9.0	-7.65	0.00	Água	0	0	C.0	0.0	0.0	0.0	C.0	2	0	1.00	1.00	0.0	0.0	0.0	0.0	
10.0	-8.65	0.00	Agua	0	0	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
11.0	-9.65	0.00	Agua Agua	0	0	0.0	0.0	0.0	0.0	10.0		130	1.00	1.00	0.0	0.0	0.0	0.0	10001
12.0	20 DT-	0.00	Arglid Siltosa	10.66		0.0	20021	142.0	2 1001	C.C21	2010	120	00 F	001	C.U+2	0.0	6.042	1001 6	1000
11.0	59 61-	0 88	Arcila aranosa	45	180	01	1707 0	763.6	10210	1.000	%69	120	100	101	853 5	0.0	863 5	0.200F	100%
15.0	-13.65	3.88	Arcila arenosa	-	480	4.0	1292.1	831.5	2123.6	641.3	61%	120	1.00	1.00	646.1	569.5	1215.6	371.8	53%
16.0	-14.65	4.88	Argila arenosa	2.73	480	4.0	605.0	869.2	1474.2	388.4	4:%	120	1.00	1.00	302.5	1183.9	1486.4	471.1	2C%
17.0	-15.65	5.88	Areia siltosa	16.96	530	1.9	695.1	991.8	1686.9	408.9	41%	400	1.00	1.00	1049.2	1098.3	2147.5	594.9	45%
18.0	-16.65	6.88	Areia siltosa	9	530	1.9	1081.2	1035.2	2116.4	468.2	51%	4C0	1.00	1.00	1632.0	1060.5	2692.5	687.6	61%
19.0	-17.65	7.88	Areia siltosa	17	530	1.9	1623.4	1158.1	2781.5	648.7	58%	4C0	1.00	1.00	2450.4	1223.9	3674.3	566.5	67%
20.0	-18.65	8.88	Argila siltosa	37	250	5.5	750.4	1523.4	2273.9	461.1	33%	120	1.00	1.00	720.4	1266.1	1986.6	540.5	36%
21.0	-19.65	9.88	Argila siltosa	4.8	250	5.5	581.3	1624.1	2205.5	450.3	26%	120	1.00	1.00	558.1	1436.3	1994.4	538.8	28%
22.0	-20.65	10.88	Argia siltosa	3.75	250	2.5 1	1//5	1893.8	20/1.3	402.5	9%	120	1.00	1.00	1/0.4	1815.3	1985.7	526.8	%6
25.0	-21.65	11.88	Arglia siltosa	5.30	200	, L	212.0	19/2.6	2184.6	405.3	10%	120	1.00	.00	203.5	2068.4	6.1/77	536.7	%5
24.0	59 20-	13.88	Argid sitted Argid siltes	87	002	0 u u	4.012	215.4.1	T'0077	5 807	06%	120	100	1 00	2005	7355.0	2 6,6462	C.0CC	0.0 %8
26.0	59 72-	14.88	Argila siltrea	4 8	250	- - -	175.4	1.4012	6 2020	207 3	%L	120	100	100	1683	2418 5	25R6 9	557 R	7%
27.0	-25.65	15.88	Argila siltosa	4.14	250	5.5	158.3	2304.8	2463.0	408.0	6%	120	1.00	1.00	151.9	2533.0	2684.9	559.3	6%
28.0	-26.65	16.88	Argila siltosa	3.46	250	5.5	141.2	2475.9	2617.1	413.5	5%	120	1.00	1.00	135.5	2603.8	2739.3	559.5	5%
29.0	-27.65	17.88	Argila siltosa	3.46	250	5.5	137.7	2527.9	2665.6	413.8	5%	120	1.00	1.00	132.2	2717.6	2849.8	560.9	5%
30.0	-28.65	18.88	Argila siltosa	3.87	250	5.5	152.5	2580.0	2732.5	414.8	6%	120	1.00	1.00	146.4	2904.6	3051.0	566.1	5%
31.0	C0.62-	19.05	Arglia siltosa	4:52	220	0 L	172.0	P.0407	2804.8	112.1	6%0	07T	00 F	1.00	155.0	4700.4	5118.4 2105 7	200.0	80 N
33.0	-31.65	21.88	Argila siltesa	+ -	750		1941	8 6220	0.0002	218.6	7%	120	1 00	1 00	186.4	3107 5	6 2020	2.102	8%
34.0	-32.65	22.88	Argila siltosa	6.21	250	5.5	206.9	2858.9	3065.8	420.2	7%	120	1.00	1.00	198.6	3189.8	3388.4	569.1	6%
35.0	-33.65	23.88	Argila siltosa	2	250	5.5	206.9	2923.6	3130.5	421.0	7%	120	1.00	1.00	198.6	3272.7	3471.3	569.6	6%
36.0	-34.65	24.88	Argila siltosa	5	250	5.5	199.5	2985.8	3185.3	421.5	6%	120	1.00	1.00	191.5	3367.6	3559.1	570.2	5%
37.0	-35.65	25.88	Argila siltosa	5.63	250	5.5	207.5	3054.2	3261.7	422.7	6%	120	1.00	1.00	199.2	3449.9	3649.1	570.9	5%
38.0	-36.65	26.88	Argila siltosa	5.63	250	5.2	223.0	3124.1	3347.1	424.4	70/	120	1.00	1.00	214.0	3530.5	3744.6	5/1.8	6%
40.0	29 85-	28.88	Argila siltosa Argila siltosa	12.0	250		7537	8 88 68	3542 6	428.6	7%	120	100	0.1	3.42.6	3 9028	10305	0700	2%
41.0	-39.65	29.88	Argila siltosa	6.43	250	5.5	280.1	3370.8	3651.0	431.3	8%	120	1.00	1.00	268.9	3803.8	4072.7	575.7	7%
42.0	-40.65	30.88	Argila siltosa	8.28	250	5.5	283.5	3475.6	3759.0	433.5	8%	120	1.00	1.00	272.1	3908.5	4180.6	576.8	7%
43.0	-41.65	31.88	Argila siltosa	7.5	250	5.5	286.5	3568.1	3854.7	435.3	7%	120	1.00	1.00	275.1	4009.6	4284.7	577.7	6%
44.0	-42.65	32.88	Argila siltosa	6.67	250	5.5	385.1	3652.5	4037.6	445.3	10%	120	1.00	1.00	369.6	4131.7	4501.3	585.0	8%
45.0	-43.65	33.88	Areia siltosa	16	530	1.9	1966.2	3789.1	5755.3	836.5	34%	400	1.00	1.00	2967.9	4242.7	7210.6	1223.9	41%
46.0	-44.65	34.88	Areia siltosa Areia eltreca	S S	230	1.9	3138.6	4171.4	7310.1	1087.2	43%	400	1.00	1.00	4737.5	4346.6	9084.1	1588.3	52%
48.0	-46.65	36.88	Areia siltosa	8 9	230	1.9	4058.5	4944.4	9002.9	1287.8	45%	400	1.00	1.00	6126.1	5026.1	11:52.2	1874.3	55%
49.0	-47.65	37.88	Areia siltosa	202	530	1.9	4058.5	5329.7	9388.3	1300.5	43%	400	1.00	1.00	6126.1	5517.5	11643.6	1887.3	53%
50.0	-48.65	38.88	Areia siltosa	20	530	1.9	4058.5	5721.9	9780.5	1125.4	41%	400	1.00	1.00	6126.1	6011.3	12137.4	1602.7	50%

TECON - BERÇO III SP3	=				LA LA	1172147	APL VL	1 10 10				Caracte	risticas das e Concreto \$=8	istacas 10cm e=15cm					
1.2.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1	MA = Nive d'§cia TT = Nive d'écia	e eno natural										o: maciça pu e não embuch nt (m):	nisuces upon Concreto φ=ε imbuch. (m ²): rada (m ²):	0.30631 0.50265 0.30631 2.51	(Desnecessá	rio se estaca n			
	ND = Worl de dragagem (= NT se rão honer dragagem) NB = Nivel de donos da burdia (desnecessirilos e estara mac 2 NA ou ao NT? NA aide emburdinada (NE)? NA	agagem (= NT se rão houver dragagem) oo da bucha (desnecessários e estaca mac 137 NE 10	gagem) staca mac								Ra Ra Ra	₄ (m): (Aoki & Vell (Aoki & Vell aão de atrito	losa): losa): int/ext:	1.57 2.00 3.50 0.6	(Desnecessá (Desnecessá	rio se estaca n rio se estaca n			
	ביני לרכזי בי	1																	- 1
Lados gerais Elevação (m) L _{ent} (m) Tipo de solo/material N _{SPT} K (k	Verues gereals V Lent (m) Tipo de solo/material N _{SPT} K (k	Tipo de solo/material N _{SPT} K (H	N _{SPT} K(k	1 S	Pa) a	(%) Q	Metoco ue	(kN) Q	loso of	(N) ["O.	đ	C1 (kPa)	5	C ₃	Qby (kN)	Q _{&U} (kN)	Qu (kN)	5[Q_u] (kN)	•
1.22 0.30 Água 0 G	0.00 Água 0 0	Água 0 C	0	9		0.0	0.0	0.0	0.0	0.0	7	0	0.00	0.00	0.0	-	0.0	a.	
0.22 0.00 Ågua 0 (0.00 Ågua 0 0	Agua 0	0 0	1		0.0	0.0	0.0	0.0	0.0		0 0	0.00	0.00	0.0		0.0		
-1.78 0.00 Mgua 0.0		Agua 0 0			-	0.0	0.0	0.0	0.0	0.0	, ,		1 00	1 00	0.0	- 00	0.0		. .
-2.78 0.30 Água 0 0	0.00 Água 0 0	Água 0 0	0	0	Ĺ	0.0	0.0	0.0	0.0	0.0		, 0	1.00	1.00	0.0	0.0	0.0	0.0	
-3.78 0.00 Água 0 0	0.00 Água 0 0	Água 0 0	0	0		0.0	0.0	0.0	0.0	0.0	-	0	1.00	1.00	0.0	0.0	0.0	0.0	
-4.78 0.00 Agua 0 0	0.00 Ventor 0 0 0 0	Agua 0 0	•	0	1	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
	0.00 Ågua	Água 0 0	0	0	1	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
-7.78 0.00 Água 0 0	0.00 Água 0 0	Água 0 0	0	0	1	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
-8.78 0.00 Água 0 0	0.00 Água 0 0	Água 0 0	0	0		0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
-10.70 0.00 Agua 0 0		Agua U U U			17	0.0	0.0	0.0	0.0	0.0			1 00	1.00	0.0	0.0	0.0	0.0	• •
-11.78 0.00 Agua 0 0	0.00 Água 0 0	Agua 0 0	0	0	1	0.0	0.0	0.0	0.0	0.0		0	1.00	1.00	0.0	0.0	0.0	0.0	
-12.78 0.30 Água 0 0	0.00 Água 0 0	Água 0 0	0 0	0	1	0.0	0.0	0.0	0.0	0.0	×	0	1.00	1.00	0.0	0.0	0.0	0.0	×
-13.78 0.00 Água 0 0	0.00 Água 0 0	Água 0 0	0 0	0	-	0.0	0.0	0.0	0.0	0.0	×	0	1.00	1.00	0.0	0.0	0.0	0.0	×
-14.78 0.50 Argila siltosa 0 250	0.50 Argila siltosa 0 250 1.50 Aroio eiteen 0 230	Argila siltosa 0 250 Aroin siltosa 0 230	0 250	250		5.5	0.0	0.0	0.0	0.0	100%	120	1.00	1.00	0.0	0.0	0.0	0.0	100%
-16.78 2.50 Arela siltosa 17 530	2.50 Areia siltosa 17 530	Areia siltosa 17 530	17 530	530	1	1.9 1	075.8 1.	1 122.9	198.7	389.2	%06	400	1.00	1.00	1623.8	0.0	1623.8	580.1	100%
-17.78 3.50 Areia siltosa 22.76 530	3.50 Areia siltosa 22.76 530	Areia siltosa 22.76 530	22.76 530	530		1.9 1	168.6 21	87.5 1	1456.1	400.5	80%	400	1.00	1.00	1753.9	75.4	1839.3	584.3	96%
-18.78 4.50 Argila arenosa 3.43 480	4.50 Argila arenosa 3.43 480	Argila arenosa 3.43 480	3.43 480	480		4.0	710.6 3.	34.8 1	1045.4	303.0	58%	120	1.00	1.00	355.3	385.4	740.7	201.2	48%
-19.78 5.60 Argila arenosa 2.81 480 -20.78 6.60 Argila arenosa 5.36 480	5.50 Argila arenosa 2.81 480 6.50 Argila arenosa 5.36 480	Argila arenosa 2.81 480 Argila arenosa 5.36 480	2.81 480 5.36 480	480	1	4.0	284.3 3	73.5	657.8	145.9	43%	120	1.00	1.00	142.1	680.8	822.9	218.9	15%
-21.78 7.50 Argila arenosa 4 480	7.50 Argila arenosa 4 480	Argila arenosa 4 480	4 480	480	Ľ	4.0	327.4 6.	10.4	937.8	155.6	35%	120	1.00	1.00	163.7	743.7	907.4	222.8	18%
-22.78 8.50 Argila areno:a 4 480	8.50 Argila arenosa 4 480	Argila arenosa 4 480	4 480	480		4.0	307.5 6	83.3	8.066	154.4	31%	120	1.00	1.00	153.8	919.3	1073.0	230.6	14%
-23.78 9.50 Argia sitosa 4.55 250	9.50 Argia siltosa 4.55 250	Argia sitosa 4.55 250	4.55 250	250		5.5	147.4 7.	42.7	1.068	135.5	17%	120	1.00	1.00	141.5	1077.8	1219.3	238.8	12%
-24./8 10.60 Argia situssa 3 250 -75.78 11.60 Årefa situssa 3.6 250	11.60 Argia sittosa 3 250 11.60 Argia sittosa 3.6 250	Argia sitosa 3 250 Argia sitosa 3.6 250	3.6 250	250	1	2.0	130 U 81	1.00	995 3	137.7	14%	120	1.00	1 D0	133.4	1199.1	1337.6	235.8	ALL SOL
-26.78 12.60 Argia siltosa 4.29 250	12.60 Argia siltosa 4.29 250	Argia siltosa 4.29 250	4.29 250	250		5.5	164.5 9:	19.3 1	083.8	142.0	15%	120	1.00	1.00	157.9	1264.8	1422.7	242.9	11%
-27.78 13.60 Argia siltosa 5 250	13.60 Argila siltosa 5 250	Argila siltosa 5 250	5 250	250		5.5	187.0 91	85.5 1	1172.5	146.6	16%	120	1.00	1.00	179.5	1333.3	1512.8	244.9	129
-28.78 14.60 Argia siltosa 5.36 250	14.60 Argia siltosa 5.36 250	Argila siltosa 5.36 250	5.36 250	250		5.5	194.0 10	1 949.6	1243.6	149.8	16%	120	1.00	1.00	186.2	1410.3	1596.5	246.3	12%
-29./8 15.60 Argla siltosa 4.84 250 -30.78 16.60 Argla siltosa 5.36 250	15.60 Argla siltosa 4.84 250 16.60 Argla siltosa 5.36 250	Argia siltosa 4,84 250 Argia siltosa 5,36 250	5 36 250	250	1	5.5	11 0.861	79.5 1	301.7	156.4	15%	120	1.00	1.00	190.5 203 g	1582 8	1786.6	247.9	11%
-31.78 17.60 Argia sittosa 6.43 250	17.60 Argla siltosa 6.43 250	Argia siltosa 6.43 250	6.43 250	250	1	5.5	227.0 12	51.5 1	488.5	161.5	15%	120	1.00	1.00	218.0	1666.1	1884.0	252.4	12%
-32.78 18.60 Argia siltosa 6 250	18.60 Argia siltosa 6 250	Argia siltosa 6 250	6 250	250		5.5	235.2 13	1 10.6	1575.8	165.4	15%	120	1.00	1.00	225.8	1757.2	1983.0	254.3	11%
-33.78 19.60 Argla siltosa 6 250	19.60 Argila siltosa 6 250	Argla siltosa 6 250	6 250	250		5.5	241.5 14	17.8 1	1659.2	169.0	15%	120	1.00	1.00	231.8	1861.2	2093.1	256.7	11%
-34.78 20.60 Argila siltosa 6.92 250	20.60 Argila siltosa 6.92 250	Argia siltosa 6.92 250	6.32 250	250	1 I.	5.5	245.7 15	1 02:00	1751.6	173.2	14%	120	1.00	1.00	235.9	1962.6	2198.4	258.7	11%
-35.78 21.60 Argia siltosa 6.33 250	21.60 Argila siltosa 6.33 250	Argia siltosa 6.33 250	6.33 250	250	1	5.5	264.8 15	92.2 1	1857.1	178.7	14%	120	1.00	1.00	254.2	2062.1	2316.3	261.8	11%
-36.78 22.60 Argia siltosa 7.5 250	22.60 Argia siltosa 7.5 250	Argia siltosa 7.5 250	7.5 250	250	Ш.	5.5	260.2 16	88.5 1	1948.7	182.3	13%	120	1.00	1.00	249.8	2172.0	2421.8	263.5	10%
-3/./8 23.60 Argia siltosa 6.50 250	23.60 Argia siltosa 6.56 250	Argia siltosa	6.56 25U	750	T	0.0	255.6 1/	15.5	1.6202	184.8	12%	120	1.00	1.00	243.5	7780.7	2523.0	264.9	S
-38.78 24.60 Argia siltosa 5.81 250	24.60 Argia siltosa 5.81 250	Argia siltosa 5.81 250	5.81 250	250		5.5	250.3 18	58.5 2	2108.7	187.1	12%	120	1.00	1.00	240.3	2397.5	2637.8	267.1	6%
-39.78 25.60 Argila siltosa 7.24 250	25.60 Argila siltosa 7.24 250	Argia siltosa 7.24 250	7.24 250	250		5.5	262.3 15	53.4 2	215.7	192.2	12%	120	1.00	1.00	251.8	2505.2	2758.0	269.9	%6
-40.78 26.60 Argia siltosa 7.5 250	26.60 Argia siltosa 7.5 250	Argia siltosa 7.5 250	7.5 250	250	-	5.5	291.2 20	55.2 2	2346.5	199.5	12%	120	1.00	1.00	279.5	2611.3	2890.8	273.6	10%
-41.78 27.60 Argia siltosa 8.08 250	27.60 Argia siltosa 8.08 250	Argila siltosa 8.08 250	8.08 250	250	-	5.5	280.9 21	59.3 2	2440.2	202.7	12%	120	1.00	1.00	269.7	2727.2	2996.9	275.0	%6
-42.78 28.60 Areia argiosa 6.43 5	28.60 Areia argilosa 6.43 5	Areia argilosa 6.43 5	6.43 5	n	30	3.0	852.6 22	54.2 3	3106.8	329.1	27%	400	1.00	1.00	1286.9	2849.4	4136.3	485.6	31%
-43.78 29.60 Areia 17	29.60 Areia 17	Areia 17	17		600	1.4 1	115.9 23	83.6 3	3499.4	394.8	32%	400	1.00	1.00	1487.8	2973.5	4461.4	529.6	33%
-44.78 30.60 Areia siltosa 13	30.60 Areia siltosa 13	Areia siltosa 13	13		530	1.9 2	164.6 25	05.3 4	1669.9	763.2	46%	400	1.00	1.00	3257.3	3080.2	6347.5	1143.1	51%
-45.78 31.60 Areia siltusa 50	31.60 Areia siltosa 50	Areia siltosa 50	25	1.1.1	530	1.9 3	057.4 28	36.8 5	5954.2	1010.0	51%	400	1.00	1.00	4615.0	3286.4	7901.4	1494.8	58%
-46.78 32.60 Areia siltosa 50 55	32.60 Areia siltosa 50 56	Areia siltosa 50 50	88	S	8	1.9 4	058.5 32	85.9	7344.4	1216.4	55%	400	1.00	1.00	5126.1	3457.3	9583.4	1791.7	64%
-47.70 53.60 Area sittosa 50 530	2300 Areia sittosa 50 530	Arela siltosa 50 530	N 73	202		1.9	056.5 5C	1 629	144.4	6.6771	52%	400	1.0U	1.00	1.021d	3959.5	10086.0	1805.5	01%
-48./8 54.60 Areia siltosa 50 530	54.b0 Areia siltosa 50 530	Areia siltosa 50 530	530	230		1.9 4	058.5 at	182./ B	3141.2	1043.1	50%	400	1.00	1.00	b126.1	4455.4	10581.5	1505./	58%

C – TABELA DAS ELEVAÇÕES E NEGAS DAS ESTACAS

nº do	Floy do	Elev. de	Nível	Elev.	Elev.	Floy Dá	
	Elev. ua	Arrasamento	d'água	Lodo	Terreno	Liev. re	Nega (m)
tstata	Cabeça (III)	(m)	(m)	(m)	(m)	(111)	
1	3.94	1.67	0.20	-14.00	-	-44.06	0.0025
2	4.12	1.67	0.05	-12.85	-	-43.88	0.0025
3	4.13	1.67	0.55	-13.30	-	-43.87	0.0025
4	3.90	1.67	0.70	-10.50	-	-44.10	0.0025
5	3.68	1.67	0.20	-10.80	-	-44.32	0.0030
6	3.33	1.67	0.35	-11.10	-	-44.67	0.0025
7	3.89	1.67	0.58	-10.95	-	-44.11	0.0025
8	3.38	1.67	0.50	-11.14	-	-44.62	0.0025
9	3.69	1.67	0.68	-11.32	-	-44.31	0.0030
10	4.30	1.67	0.45	-11.60	-	-43.70	0.0030
11	3.73	1.67	0.08	-11.20	-	-44.27	0.0030
12	3.22	1.67	0.20	-12.55	-	-44.78	0.0025
13	3.07	1.67	0.17	-12.05	-	-44.93	0.0020
14	2.78	1.67	0.28	-16.00	-	-43.79	0.0028
15	3.18	1.67	0.65	-13.40	-	-43.39	0.0022
16	3.87	1.67	0.40	-15.06	-	-42.70	0.0015
17	3.29	1.67	0.65	-12.60	-	-43.28	0.0020
18	3.11	1.67	0.40	-13.30	-	-43.46	0.0030
19	2.98	1.67	0.50	-12.00	-	-43.59	0.0025
20	3.73	1.67	0.60	-12.00	-	-44.27	0.0020
21	3.74	1.67	0.55	-11.65	-	-44.26	0.0030
22	3.88	1.67	0.50	-12.45	-	-44.12	0.0025
23	4.05	1.67	0.80	-12.40	-	-43.95	0.0025
24	3.52	1.67	0.70	-12.05	-	-44.48	0.0030
25	3.16	1.67	0.63	-11.80	-	-43.41	0.0020
26	2.63	1.67	0.30	-12.12	-	-43.94	0.0030
27	4.29	1.67	0.60	-11.40	-	-42.28	0.0043
28	3.27	1.67	0.65	-11.65	-	-43.30	0.0034
29	2.95	1.67	0.18	-12.05	-	-43.62	0.0030
30	2.87	1.67	0.05	-12.00	-	-43.70	0.0025
31	3.50	1.67	-0.10	-18.00	-	-43.07	0.0031
32	3.67	1.67	-0.10	-15.00	-	-42.90	0.0030
33	3.41	1.67	0.20	-15.60	-	-43.16	0.0030
34	3.49	1.67	0.40	-15.00	-	-43.08	0.0025
35	2.13	1.67	0.35	-13.80	-	-43.74	0.0025
36	3.90	1.67	0.40	-13.80	-	-42.67	0.0025
37	3.80	1.67	0.10	-14.10	-	-44.20	0.0025
38	3.69	1.67	0.30	-12.60	-	-44.31	0.0025
39	3.69	1.67	0.32	-13.02	-	-44.31	0.0030
40	3.09	1.67	0.28	-13.20	-	-44.91	0.0025
----	------	------	-------	--------	--------	--------	--------
41	3.19	1.67	0.17	-12.80	-	-44.81	0.0025
42	2.68	1.67	0.30	-11.70	-	-43.89	0.0025
43	2.89	1.62	0.00	-	-15.10	-43.68	0.0014
44	2.98	1.67	0.40	-12.91	-	-43.59	0.0030
45	2.94	1.62	0.10	-11.90	-14.70	-43.63	0.0021
46	2.83	1.67	0.40	-12.90	-	-43.74	0.0025
47	3.22	1.67	0.30	-12.70	-14.60	-43.35	0.0008
48	4.69	1.62	0.00	-17.00	-17.50	-43.31	0.0004
49	4.90	1.62	0.00	-16.00	-18.00	-43.10	0.0008
50	4.50	1.62	0.20	-16.80	-17.90	-43.50	0.0002
51	4.39	1.62	0.10	-	-17.90	-43.61	0.0003
52	4.29	1.62	-0.10	-15.90	-17.00	-43.71	0.0004
53	4.70	1.62	-0.10	-13.40	-14.70	-43.30	0.0002
54	4.40	1.62	0.20	-14.80	-15.6	-43.60	0.0001
55	4.39	1.62	0.20	-15.10	-15.80	-43.61	0.0003
56	2.74	1.62	0.00	-15.30	-16.00	-45.26	0.0014
57	3.00	1.62	0.00	-16.00	-16.70	-45.00	0.0014
58	2.80	1.62	0.20	-15.10	-15.80	-45.20	0.0021
59	3.79	1.62	0.30	-	-14.90	-44.21	0.0014
60	3.10	1.62	0.20	-	-14.90	-44.90	0.0014
61	3.17	1.67	0.25	-12.95	-	-44.83	0.0030
62	2.82	1.67	0.30	-12.00	-	-45.18	0.0030
63	3.32	1.67	0.72	-10.80	-	-44.68	0.0025
64	3.68	1.67	0.08	-11.00	-	-44.32	0.0030
65	3.63	1.67	0.28	-11.25	-	-44.37	0.0025
66	3.80	1.67	0.20	-11.15	-	-44.20	0.0025
67	4.01	1.67	0.50	-10.80	-	-43.99	0.0025
68	3.78	1.67	0.31	-11.90	-	-44.22	0.0030
69	3.39	1.67	0.48	-12.32	-	-44.61	0.0030
70	3.48	1.67	0.30	-11.72	-	-44.52	0.0025
71	3.76	1.67	0.26	-11.24	-	-44.24	0.0025
72	3.30	1.67	0.26	-12.40	-	-44.70	0.0030
73	3.16	1.67	0.56	-12.70	-	-44.84	0.0025
74	3.51	1.67	0.56	-12.70	-	-43.06	0.0021
75	3.34	1.67	0.40	-10.70	-	-43.23	0.0025
76	3.08	1.67	-	-12.40	-	-43.49	0.0025
77	2.83	1.67	0.55	-11.80	-	-43.74	0.0030
78	3.55	1.67	0.75	-11.90	-	-43.02	0.0025
79	3.13	1.67	0.10	-11.60	-	-43.44	0.0030
80	3.98	1.67	0.03	-11.95	-	-44.02	0.0025
81	3.05	1.67	0.35	-11.95	-	-44.95	0.0030
82	3.80	1.67	0.00	-11.80	-	-44.20	0.0025
83	3.55	1.67	0.55	-12.53	-	-44.45	0.0025
84	3.45	1.67	0.33	-12.20	-	-44.55	0.0030

85	3.04	1.67	0.40	-11.40	-	-43.53	0.0030
86	3.70	1.67	0.30	-13.50	-	-42.87	0.0030
87	3.12	1.67	0.30	-12.60	-	-43.45	0.0030
88	2.57	1.67	0.50	-13.20	-	-44.00	0.0029
89	2.29	1.67	0.54	-11.90	-	-44.28	0.0025
90	2.32	1.67	0.61	-13.65	-	-44.25	0.0030
91	3.11	1.67	0.20	-14.00	-14.80	-43.46	0.0027
92	3.24	1.67	0.60	-12.50	-	-43.33	0.0025
93	3.35	1.67	-0.05	-14.45	-15.25	-43.22	0.0005
94	3.24	1.67	0.52	-13.00	-	-43.33	0.0025
95	2.99	1.67	0.00	-13.70	-14.70	-43.58	0.0025
96	3.63	1.67	0.72	-11.45	-	-42.94	0.0025
97	3.70	1.67	0.10	-11.80	-12.60	-44.30	0.0014
98	3.00	1.67	-0.10	-13.40	-	-45.00	0.0020
99	3.48	1.67	0.20	-14.60	-	-44.52	0.0020
100	2.96	1.67	0.10	-14.80	-	-45.04	0.0030
101	3.10	1.67	0.28	-14.28	-	-44.90	0.0030
102	3.12	1.67	0.60	-13.00	-	-43.45	0.0030
103	2.76	1.67	0.22	-16.00	-	-43.81	0.0010
104	2.94	1.67	0.10	-12.80	-	-43.63	0.0025
105	2.62	1.67	0.37	-12.20	-	-43.95	0.0029
106	3.43	1.67	0.59	-12.80	-	-43.14	0.0025
107	2.60	1.67	0.54	-14.90	-	-43.97	0.0030
108	3.90	1.67	0.30	-	-15.40	-44.10	0.0038
109	4.20	1.67	-0.30	-15.80	-	-43.80	0.0021
110	4.70	1.67	-0.10	-15.80	-	-43.30	0.0033
111	4.70	1.67	0.10	-15.40	-	-43.30	0.0032
112	2.75	1.67	0.15	-15.40	-	-45.25	0.0014
113	3.20	1.67	0.20	-15.30	-	-44.80	0.0021
114	3.08	1.67	0.05	-	-18.10	-44.92	0.0030
115	2.90	1.67	0.10	-15.30	-16.20	-45.10	0.0020
116	3.07	1.67	0.25	-15.60	-	-44.93	0.0020
117	2.88	1.67	0.25	-15.20	-16.00	-45.12	0.0020
118	3.08	1.67	0.50	-15.10	-	-44.92	0.0030
119	2.82	1.67	0.30	-14.90	-	-45.18	0.0020
120	2.60	1.67	0.30	-15.50	-	-45.40	0.0030
121	3.50	1.67	0.10	-12.00	-	-44.50	0.0025
122	3.67	1.67	0.32	-12.20	-	-44.33	0.0030
123	4.21	1.67	0.26	-11.60	-	-43.79	0.0030
124	2.95	1.67	-	-11.70	-	-45.05	0.0025
125	3.51	1.67	0.40	-12.00	-	-44.49	0.0025
126	3.13	1.67	0.38	-12.30	-	-44.87	0.0025
127	3.06	1.67	0.26	-11.40	-	-44.94	0.0025
128	3.00	1.67	-	-11.50	-	-45.00	0.0025
129	3.22	1.67	0.23	-13.05	-	-44.78	0.0025

130	2.90	1.67	0.10	-13.35	-	-45.10	0.0025
131	2.95	1.67	0.15	-12.50	-	-45.05	0.0025
132	2.85	1.67	0.50	-11.80	-	-45.15	0.0025
133	2.95	1.67	0.10	-12.20	-	-45.05	0.0025
134	1.87	1.67	0.50	-13.05	-	-44.70	0.0025
135	2.88	1.67	0.42	-13.40	-	-43.69	0.0025
136	2.10	1.67	0.41	-13.10	-	-44.47	0.0025
137	2.82	1.67	0.39	-16.90	-	-43.75	0.0025
138	1.88	1.67	0.59	-12.90	-	-44.69	0.0030
139	2.95	1.67	0.42	-12.40	-	-43.62	0.0030
140	2.90	1.67	-0.10	-18.10	-	-45.10	0.0025
141	2.85	1.67	-0.20	-13.70	-	-45.15	0.0025
142	2.74	1.67	-0.25	-14.90	-	-45.26	0.0025
143	3.00	1.67	0.40	-14.60	-	-45.00	0.0025
144	2.75	1.67	0.10	-14.10	-	-45.25	0.0025
145	2.97	1.67	0.48	-13.25	-	-43.60	0.0030
146	2.37	1.67	0.15	-13.50	-	-44.20	0.0030
147	2.23	1.67	0.05	-13.35	-	-44.34	0.0030
148	2.35	1.67	0.50	-15.90	-	-44.22	0.0030
149	2.26	1.67	0.20	-15.30	-	-44.31	0.0010
150	1.59	1.67	0.33	-16.00	-	-44.98	0.0030
151	1.50	1.67	0.75	-15.35	-	-45.07	0.0015
152	2.63	1.67	0.10	-13.25	-	-43.94	0.0025
153	2.07	1.67	0.18	-13.95	-	-44.50	0.0025
154	2.41	1.67	0.52	-15.60	-	-44.16	0.0025
155	1.87	1.67	0.42	-15.20	-	-44.70	0.0025
156	2.66	1.67	0.20	-15.70	-	-43.91	0.0030
157	2.63	1.67	0.58	-16.10	-	-45.37	0.0030
158	2.54	1.67	-0.05	-19.40	-	-45.46	0.0025
159	2.81	1.67	0.23	-15.00	-	-45.19	0.0025
160	2.80	1.67	0.20	-14.30	-	-45.20	0.0025
161	2.76	1.67	0.02	-15.10	-	-45.24	0.0025
162	2.12	1.67	0.10	-15.35	-	-44.45	0.0035
163	1.81	1.67	0.60	-14.25	-	-44.76	0.0025
164	1.86	1.67	0.50	-14.85	-	-44.71	0.0030
165	1.50	1.67	0.56	-14.25	-	-45.07	0.0030
166	2.64	1.67	0.10	-15.05	-	-43.93	0.0030
167	1.35	1.67	-0.17	-14.35	-	-45.22	0.0025
168	2.83	1.67	0.38	-15.00	-	-45.17	0.0025
169	2.92	1.67	0.58	-14.92	-	-45.08	0.0025
170	2.63	1.67	0.58	-14.60	-	-45.37	0.0025
171	2.90	1.67	0.65	-14.60	-	-45.10	0.0025
172	2.91	1.67	0.59	-14.75	-	-45.09	0.0025
173	2.90	1.67	0.75	-16.85	-	-45.10	0.0020
174	2.75	1.67	0.15	-15.35	-	-45.25	0.0025

175	2.72	1.67	0.52	-16.70	-	-45.28	0.0025
176	2.82	1.67	0.30	-16.50	-	-45.18	0.0025
177	2.73	1.67	0.00	-15.90	-	-45.27	0.0020
178	2.57	1.67	2.57	-15.05	-	-45.43	0.0030
179	2.44	1.67	0.18	-14.85	-	-45.56	0.0025
180	2.26	1.67	0.18	-15.05	-	-45.74	0.0025
181	2.90	1.67	0.10	-12.56	-	-45.10	0.0025
182	2.97	1.67	0.09	-12.60	-	-45.03	0.0025
183	2.98	1.67	0.10	-12.85	-	-45.02	0.0020
184	2.78	1.67	0.10	-14.05	-	-45.22	0.0030
185	2.88	1.67	0.28	-13.75	-	-45.12	0.0025
186	2.73	1.67	0.08	-14.15	-	-45.27	0.0025
187	2.78	1.67	0.03	-14.55	-	-45.22	0.0025
188	2.84	1.67	0.20	-14.75	-	-45.16	0.0030
189	2.88	1.67	0.18	-15.35	-	-45.12	0.0025
190	2.62	1.67	-0.20	-15.15	-	-45.38	0.0025
191	2.55	1.67	-0.25	-15.55	-	-45.45	0.0030
192	2.48	1.67	0.40	-13.45	-	-45.52	0.0030
193	2.69	1.67	0.48	-13.65	-	-45.31	0.0025
194	1.86	1.67	0.00	-16.15	-	-44.71	0.0025
195	2.03	1.67	0.20	-15.35	-	-44.54	0.0025
196	1.95	1.67	0.10	-16.25	-	-44.62	0.0030
197	2.38	1.67	0.19	-15.45	-	-44.19	0.0025
198	2.18	1.67	0.02	-16.25	-	-44.39	0.0025
199	2.21	1.67	-0.05	-15.35	-	-44.36	0.0020
200	2.78	1.67	-0.05	-15.85	-	-45.22	0.0030
201	2.74	1.67	0.10	-14.55	-	-45.26	0.0030
202	2.68	1.67	0.10	-14.75	-	-45.32	0.0030
203	2.60	1.67	0.10	-14.85	-	-45.40	0.0025
204	2.70	1.67	0.10	-14.65	-	-45.30	0.0030
205	1.76	1.67	0.20	-15.45	-	-44.81	0.0025
206	2.26	1.67	0.30	-15.35	-	-44.31	0.0025
207	2.08	1.67	0.13	-15.05	-	-44.49	0.0020
208	2.62	1.67	0.28	-15.65	-	-43.95	0.0030
209	1.96	1.67	0.50	-14.65	-	-44.61	0.0025
210	2.70	1.67	0.10	-14.95	-	-43.87	0.0025
211	1.45	1.67	-0.10	-15.15	-	-45.12	0.0020
212	1.76	1.67	0.50	-16.50	-	-44.81	0.0025
213	1.32	1.67	0.50	-15.90	-	-45.25	0.0025
214	1.77	1.67	0.02	-16.70	-	-44.80	0.0025
215	1.55	1.67	-0.05	-16.20	-	-45.02	0.0030
216	2.41	1.67	0.03	-16.25	-	-44.16	0.0025
217	2.76	1.67	0.05	-16.35	-	-45.24	0.0030
218	2.60	1.67	0.10	-16.35	-	-45.40	0.0030
219	2.32	1.67	-0.05	-16.55	-	-45.68	0.0030

220	2.53	1.67	0.15	-16.45	-	-45.47	0.0025
221	2.33	1.67	0.00	-16.65	-	-45.61	0.0025
222	1.85	1.67	0.00	-15.45	-	-44.72	0.0025
223	2.57	1.67	0.10	-16.25	-	-44.00	0.0030
224	2.02	1.67	0.10	-15.65	-	-44.55	0.0025
225	2.09	1.67	0.10	-16.25	-	-44.48	0.0025
226	2.23	1.67	-0.10	-15.85	-	-44.34	0.0025
227	2.27	1.67	0.10	-17.15	-	-44.30	0.0030
228	2.40	1.67	0.05	-14.75	-	-45.60	0.0025
229	2.54	1.67	0.18	-15.05	-	-45.46	0.0025
230	2.45	1.67	0.22	-15.55	-	-45.55	0.0025
231	2.47	1.67	-0.08	-15.35	-	-45.53	0.0025
232	2.70	1.67	0.05	-15.35	-	-45.30	0.0025
233	2.80	1.67	0.30	-15.15	-	-45.20	0.0025
234	2.62	1.67	0.45	-13.63	-	-45.38	0.0025
235	2.29	1.67	0.31	-16.80	-	-45.71	0.0025
236	2.49	1.67	0.45	-17.00	-	-45.51	0.0030
237	3.15	1.67	-0.05	-17.10	-	-44.85	0.0025
238	2.70	1.67	0.05	-17.00	-	-45.30	0.0025
239	2.70	1.67	0.00	-17.30	-	-45.30	0.0030
240	2.95	1.67	0.05	-17.10	-	-45.05	0.0025
241	2.66	1.67	0.28	-14.90	-	-45.34	0.0025
242	2.99	1.67	0.20	-14.80	-	-45.01	0.0030
243	3.28	1.67	0.30	-14.90	-	-44.72	0.0030
244	3.20	1.67	0.35	-14.80	-	-44.80	0.0030
245	3.15	1.67	0.20	-15.00	-	-44.85	0.0025
246	3.30	1.67	0.50	-15.22	-	-44.70	0.0030
247	3.25	1.67	0.50	-15.60	-	-44.75	0.0025
248	2.92	1.67	0.10	-14.80	-	-45.08	0.0030
249	2.55	1.67	0.20	-14.60	-	-45.45	0.0030
250	2.77	1.67	0.40	-15.50	-	-45.23	0.0030
251	2.84	1.67	0.05	-14.90	-	-45.16	0.0030
252	2.80	1.67	0.27	-15.10	-	-45.20	0.0030
253	2.70	1.67	0.20	-15.10	-	-45.30	0.0030
254	2.31	1.67	0.00	-14.65	-	-44.26	0.0030
255	2.24	1.67	0.39	-14.15	-	-44.33	0.0030
256	1.39	1.67	0.05	-14.85	-	-45.18	0.0025
257	2.55	1.67	-0.12	-14.25	-	-44.02	0.0020
258	1.88	1.67	0.28	-15.15	-	-44.69	0.0025
259	3.12	1.62	0.30	-14.45	-	-43.45	0.0030
260	3.00	1.67	0.10	-14.50	-	-45.00	0.0030
261	2.68	1.67	0.00	-14.60	-	-45.32	0.0025
262	2.83	1.67	0.05	-14.70	-	-45.17	0.0030
263	2.85	1.67	-0.05	-16.30	-	-45.15	0.0025
264	2.88	1.67	0.30	-15.00	-	-45.12	0.0030

265	2.48	1.67	0.00	-15.20	-	-44.09	0.0030
266	1.90	1.67	-0.05	-15.40	-	-44.67	0.0025
267	2.16	1.67	0.05	-15.20	-	-44.41	0.0025
268	1.77	1.67	0.20	-15.60	-	-44.80	0.0025
269	2.18	1.67	-0.10	-15.20	-	-44.39	0.0025
270	2.09	1.67	0.15	-15.40	-	-44.48	0.0030
271	1.74	1.67	0.40	-15.15	-	-44.83	0.0025
272	2.83	1.67	0.45	-14.85	-	-43.74	0.0025
273	1.72	1.67	0.40	-15.15	-	-44.85	0.0020
274	2.78	1.67	0.30	-14.95	-	-43.79	0.0020
275	1.81	1.67	0.12	-15.25	-	-44.76	0.0025
276	3.05	1.67	0.30	-15.15	-	-43.52	0.0030
277	2.94	1.67	0.20	-14.80	-	-45.06	0.0030
278	2.78	1.67	0.20	-16.00	-	-45.22	0.0025
279	3.11	1.67	0.20	-16.10	-	-44.89	0.0025
280	2.85	1.67	0.20	-16.50	-	-45.15	0.0025
281	2.75	1.67	0.25	-16.50	-	-45.25	0.0025
282	1.60	1.67	0.50	-11.30	-	-44.97	0.0025
283	1.66	1.67	0.20	-16.70	-	-44.91	0.0025
284	2.29	1.67	0.27	-16.40	-	-44.28	0.0025
285	1.97	1.67	0.50	-16.80	-	-44.60	0.0025
286	2.20	1.67	0.35	-16.40	-	-44.37	0.0030
287	1.66	1.67	0.37	-15.90	-	-44.91	0.0025
288	2.88	1.67	-0.10	-17.35	-	-45.12	0.0025
289	2.73	1.67	0.15	-17.75	-	-45.27	0.0030
290	2.83	1.67	0.45	-15.45	-	-45.17	0.0025
291	2.41	1.67	0.50	-15.45	-	-45.59	0.0030
292	2.51	1.67	0.60	-14.65	-	-45.49	0.0025
293	2.65	1.67	0.40	-15.65	-	-45.35	0.0025
294	2.75	1.67	0.30	-16.25	-	-45.25	0.0025
295	2.83	1.67	0.45	-16.15	-	-45.17	0.0025
296	2.45	1.67	0.30	-17.60	-	-45.55	0.0025
297	2.82	1.67	0.40	-17.30	-	-45.18	0.0025
298	2.74	1.67	0.20	-17.80	-	-45.26	0.0030
299	2.39	1.67	0.28	-17.70	-	-45.61	0.0025
300	2.73	1.67	0.28	-17.80	-	-45.27	0.0025

D – TESTES DE KOLMOGOROV-SMIRNOV PARA AS DISTRIBUIÇÕES DAS NEGAS

Teste de Kolmogorov-Smirnov – módulo 1 – distribuição Normal

Teste de Kolmogorov-Smirnov - módulo 1 - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - módulo 1 - distribuição Beta

Teste de Kolmogorov-Smirnov - módulo 2 - distribuição Normal

Teste de Kolmogorov-Smirnov - módulo 2 - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - módulo 2 - distribuição Beta

Teste de Kolmogorov-Smirnov - módulo 3 - distribuição Normal

Teste de Kolmogorov-Smirnov - módulo 3 - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - módulo 3 - distribuição Beta

Teste de Kolmogorov-Smirnov - módulo 4 - distribuição Normal

Teste de Kolmogorov-Smirnov - módulo 4 - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - módulo 4 - distribuição Beta

Teste de Kolmogorov-Smirnov - módulo 5 - distribuição Normal

Teste de Kolmogorov-Smirnov - módulo 5 - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - módulo 5 - distribuição Beta

Teste de Kolmogorov-Smirnov - análise global das 300 estacas - distribuição Normal

Teste de Kolmogorov-Smirnov - análise global das 300 estacas - distribuição Log-Normal

Teste de Kolmogorov-Smirnov - análise global das 300 estacas - distribuição Beta

